Saturday, October 24, 2020

Re :: Pos. Feedback Op Amp


Definitions ::

\[\boxed{\frac1{R}=\frac1{R_1}+\frac1{R_2}=\frac1{R_3}+\frac1{R_4}\\ \frac1{R_{1_2}}{}^{↓}=^{↓}\frac1R-\frac1{R_{2_1}}\\ \frac1{R_{3_4}}{}^{↓}=^{↓}\frac1R-\frac1{R_{4_3}}}\]

\[{}^{↓↓}\ \frac{R_3}{R_1}+\frac{R_3}{R_2}-\frac{R_3}{R_3}=\frac{R_3}{R_4}=\\ =\mathbf{R_3·\frac{R_1+R_2}{R_1·R_2}-1}\]

\[V_B=V_X·\frac{R_1}{R_1+R_2}\\ V_A=V_S+\left({V_X-V_S}\right)·\frac{R_3}{R_3+R_4}\]

\[V_X·\frac{R_1}{R_1+R_2}=V_S+\left({V_X-V_S}\right)·\frac{R_3}{R_3+R_4}\\ V_X·\left({\frac{R_1}{R_1+R_2}-\frac{R_4}{R_3+R_4}}\right)=V_S·\left({1-\frac{R_4}{R_3+R_4}}\right)\]

\[A_V=N=\frac{V_X}{V_S}=\frac{\frac{\cancel{R_3}+R_4\cancel{-R_3}}{\bcancel{R_3+R_4}}}{\frac{\cancel{R_1·R_3}+R_1·R_4\cancel{-R_1·R_3}+R_2·R_3}{\left({R_1+R_2}\right)·\bcancel{\left({R_3+R_4}\right)}}}=\]

\[=\frac{R_1·R_4+R_2·R_4}{R_1·R_4-R_2·R_3}=\frac{1+\frac{R_2}{R_1}}{1-\frac{R_2}{R_1}·\frac{R_3}{R_4}}\]

\[N-N·\frac{R_2}{R_1}·\frac{R_3}{R_4}=1+\frac{R_2}{R_1}\]

\[\left({N-1}\right)·R_1·R_4=R_2·\left({N·R_3+R_4}\right)\]


\[\frac{R_2}{R_1}=\frac{\left({N-1}\right·R_4)}{N·R_3+R_4}=\frac{N-1}{N·\frac{R_3}{R_4}+1}\]

\[{}^{↑↑}\ \frac{R_2}{R_1}·\left({N·\mathbf{\left({R_3·\frac{R_1+R_2}{R_1·R_2}-1}\right)}+1}\right)=N-1\]

\[\frac{R_2}{R_1}·\left({N·R_3·\frac{R_1+R_2}{R_1·R_2}-\left({N-1}\right)}\right)=N-1\]

\[\frac{R_2}{R_1}=\frac1{\frac N{N-1}·R_3·\frac{R_1+R_2}{R_1·R_2}-1}\]

\[\frac N{N-1}·R_3·\frac{\frac{R_1}{R_2}+1}{R_1}-1=\frac{R_1}{R_2}\]

 \[\frac N{N-1}·R_3·\frac{1+\frac{R_2}{R_1}}{R_1}-\frac{R_2}{R_1}=1\]

 \[\frac N{N-1}·R_3·\frac{\bcancel{\frac{R_2}{R_1}+1}}{R_1}=\bcancel{\frac{R_2}{R_1}+1}\]

 \[\frac N{N-1}=\mathbf{\frac{R_1}{R_3}}\]


 \[\frac{R_2}{R_1}=\frac{N-1}{N·\frac{R_3}{R_4}+1}=\frac1{\frac N{N-1}·\frac{R_3}{R_4}+\frac1{N-1}}=\]

\[=\frac1{\mathbf{\frac{R_1}{\cancel{R_3}}}·\frac{\cancel{R_3}}{R_4}+\frac1{N-1}}=\frac1{\frac{R_1}{R_4}+\frac1{N-1}}\]

\[\frac{R_2}{R_1}·\left({\frac{R_1}{R_4}+\frac1{N-1}}\right)=1\\ \frac1{R_4}+\frac1{R_1}·\frac1{N-1}=\frac1{R_2}\\ \frac1{R_1}·\frac1{N-1}=\frac1{R_2}-\frac1{R_4}\]

\[N-1=\frac1{R_1·\left({\frac1{R_2}-\frac1{R_4}}\right)}\]


\[N=1+\frac1{R_1·\left({\frac1{R_2}-\frac1{R_4}}\right)}{}^{↑}=^{↑}1+\frac1{R_1·\left({\frac1{R_2}+\frac1{R_3}-\frac1R}\right)}=1+\frac1{R_1·\left({\frac1{R_3}-\frac1{R_1}}\right)}=\]

\[=\boxed{A_V=1+\frac1{\frac{R_1}{R_3}-1}}\]

Reminder :: \(\frac1{R_4}=\frac1{R_2}+\frac1{R_1}-\frac1{R_3} \) or \(\cases{\frac1{R_2}=\frac1R-\frac1{R_1}\\ \frac1{R_4}=\frac1R-\frac1{R_3}}\)

\({Def\ ::\ d=\frac{R_1}{R_3}\\ then\ :\ N-1=\frac1{d-1}\ and\ d=1+\frac1{N-1}}\)

if R is also given the rest can be computed ... as \(R_1=d·R_3\)

in "general" situation the LM308 likes the biasing resistance of the double 7k5 Ω --e.g.-- the R = 3.75 kΩ (for the noisy input the 100 kΩ in parallel with the 5 pF or less may be more suitable/stable however - so ... )

Related Post : More Op-Amp biasing schemes

The LTSpice Example ::


PS! the negative gain can result by the reached formula for the voltage gain -- but in practise it won't work !!!

a slew-rate versus a common mode input impedance ::



Note :: the realistic/conventional Op.-Amp.-s have the impedance value a bit lower than shown in the simulation


[Eop]

Wednesday, August 5, 2020

The variety of XOR-s


\[ A\oplus B=\left({A+B}\right)\overline{AB}=^1\]
\[ =^1\overline{\overline{A\overline{AB}}}+\overline{\overline{B\overline{AB}}}=^{21} \]
\[ =^{21}\overline{\overline{A\overline{AB}}\ ·\ \overline{B\overline{AB}}}=^{22} \]
\[ =^1=\left({A+B}\right)\overline{\overline{\overline{A}}\ ·\ \overline{\overline{B}}}=\left({A+B}\right)\overline{\overline{\overline{A}+\overline{B}}}=\left({A+B}\right)\left({\overline{A}+\overline{B}}\right)=^{31} \]
\[ =^{31}\overline{\overline{A+B}}\ ·\ \overline{\overline{\overline{A}+\overline{B}}}=\overline{\overline{A+B}\ +\ \overline{\overline{A}+\overline{B}}}=\overline{\overline{A+B}\ +\ AB}=^{32} \]
\[ =^{31}\cancel{A\overline{A}}+A\overline{B}+B\overline{A}+\cancel{B\overline{B}}=A\overline{B}+B\overline{A}=^{41} \]
\[  =^{41}\overline{\overline{A\overline{B}+B\overline{A}}}=\overline{\overline{A\overline{B}}\ ·\ \overline{B\overline{A}}}=^{42}\overline{\left({A+\overline{B}}\right)\left({\overline{A}+B}\right)}= \]
\[ =\overline{\cancel{A\overline{A}}+AB+\overline{A}\ \overline{B}+\cancel{B\overline{B}}}=\overline{AB+\overline{A}·\overline{B}}=^{32} \]
\[ =^{32}\overline{\overline{\overline{\overline{A+B}+A}}\ ·\ \overline{\overline{\overline{A+B}+B}}}=\overline{\overline{A+B}+A}+\overline{\overline{A+B}+B}=^{33} \]

note : since the Boolean Arithmetic has no priority in between the conjunction and the disjunction -- the following applies (the (2 might be used above ... somewhere) ::

\[ \left({A+B}\right)\left({C+D}\right)=AC+AD+BC+BD\qquad^{(1} \]
\[ A·B+C·D=\left({A+C}\right)·\left({A+D}\right)·\left({B+C}\right)·\left({B+D}\right)=_{"PROOF"}\qquad^{(2} \]
\[ =_{"PROOF"}\left({A+AD+CA+CD}\right)\left({B+BD+CB+CD}\right)= \]
\[ _{=AB+ABD_1+ACB_2+ACD_3+ADB_1+ADCB_4+ACD_3+CAB_2+CABD_4+CAB_2+CAD_3+CDB_5+CD=} \]
\[ =\mathbf{AB}_1+\mathbf{AB}D_2+\mathbf{AB}C_3+A\boxed{CD}+\mathbf{AB}\boxed{CD}_4+B\boxed{CD}+\boxed{CD}= \]
\[ =AB\left({1+D+C+CD}\right)+\left({A+AB+B+1}\right)CD=AB+CD\]
also
\[A+AX=A\left({X+\overline{X}}\right)+AX=AX+A\overline{X}=A=A\left({1+X}\right)=A\left({X+\overline{X}+X}\right) \]
etc. ...


the simulation ::



[EoP]

Saturday, July 18, 2020

Swapping Display Memory on Desk Calculator


v.1
\[\begin{array}{llll}
math.&{key\\presses}&{DISP.\\B}&{MEM\\A}\\
M=M+D & [\ M+\ ] &B&A+B\\
D=-D & [\ ±\ ] &-B&A+B\\
D=D+M & [\ +\ ]\ [\ MR\ ]\ [\ =\ ] &-B+A+B&A+B\\
M=M-D & [\ M-\ ] &A&A+B-A\\
M ↔ D &done&A&B
\end{array}
\]

v.2
\[\begin{array}{llll}
math.&{key\\presses}&{DISP.\\B}&{MEM\\A}\\
D=-D & [\ ±\ ] &-B&A\\
D=D+M & [\ +\ ]\ [\ MR\ ]\ [\ =\ ] &-B+A&A\\
M=M-D & [\ M-\ ] &A-B&A-A+B\\
D="0,=" & [\ 0\ ]\ [\ =\ ] &0(+A)&B\\
M ↔ D &done&A&B
\end{array}
\]

v.3
\[\begin{array}{llll}
math.&{key\\presses}&{DISP.\\B}&{MEM\\A}\\
D=D-M & [\ -\ ]\ [\ MR\ ]\ [\ =\ ] &B-A&A\\
M=M+D & [\ M+\ ] &B-A&A+B-A\\
D=D-M & [\ -\ ]\ [\ MR\ ]\ [\ =\ ] &-A+B-B&B\\
D=-D & [\ ×\ ]\ [\ 1\ ]\ [\ -\ ]\ [\ =\ ]\ \left({\ _{[\ =\ ]}\ }\right)^{\ (1} &(-A)·1-((-A)·1)&B\\
M ↔ D &done&A&B
\end{array}\\
_{NOTE^{\ (1}\ :\ DEPENDING\ ON\ THE\ SPECIFIC\ CALCULATOR\ THE\ ALTERNATE\ SEQUENCE\\ FOR\ THE\ ARITHMETIC\ NEGATION\ [\ ±\ ]\ MAY\ REQUIRE\ DOUBLE\ [\ =\ ]\ PRESS} 
\]

[Eop]

Wednesday, July 8, 2020

Resistor Bridge


Simulation / Schematic :


\[U_R=\frac{U_LR_2R_4+U_UR_0R_4+U_DR_0R_2}{R_2R_4+R_0R_4+R_0R_2}=
\frac{U_L\left({R_1R_3+R_0R_3+R_0R_1}\right)-U_UR_0R_3-U_DR_0R_1}{R_1R_3}\]
\[U_L=\frac{U_RR_1R_3+U_UR_0R_3+U_DR_0R_1}{R_1R_3+R_0R_3+R_0R_1}=
\frac{U_R\left({R_2R_4+R_0R_4+R_0R_2}\right)-U_UR_0R_4-U_DR_0R_2}{R_2R_4}\]
\(U_RR_1R_3R_2R_4+U_UR_0R_3R_2R_4+U_DR_0R_1R_2R_4=U_R\sum_E^3\sum_O^3-U_UR_0R_4\sum_O^3-U_DR_0R_2\sum_O^3\)
\[U_R=R_0·\frac{\left({U_UR_3+U_DR_1}\right)R_2R_4+\left({U_UR_4+U_DR_2}\right)\sum_O^3}{\sum_E^3\sum_O^3-R_1R_2R_3R_4}\]
\(U_LR_1R_3R_2R_4+U_UR_0R_4R_1R_3+U_DR_0R_2R_1R_3=U_L\sum_O^3\sum_E^3-U_UR_0R_3\sum_E^3-U_DR_0R_1\sum_E^3\)
\[U_L=R_0·\frac{\left({U_UR_4+U_DR_2}\right)R_1R_3+\left({U_UR_3+U_DR_1}\right)\sum_E^3}{\sum_E^3\sum_O^3-R_1R_2R_3R_4}\]


[Eop]

Tuesday, July 7, 2020

3 - Resistor Voltage Divider


\[I_0+I_1+I_2=0\qquad,\qquad\text{! Notice the directions of the currents !}\]
\[{\large \cases{I_0=\frac{V_0-V_X}{R_0}\\ {\ }\\
I_1=\frac{V_1-V_X}{R_1}\\ {\ }\\
I_2=\frac{V_2-V_X}{R_2}}}\]
\[\frac{V_0-V_X}{R_0}+\frac{V_1-V_X}{R_1}+\frac{V_2-V_X}{R_2}=0\]
\[\frac{V_0R_1R_2-V_XR_1R_2+V_1R_0R_2-V_XR_0R_2+V_2R_0R_1-V_XR_0R_1}{R_0R_1R_2}=0\qquad|\qquad×R_0R_1R_2\]
\[\frac{V_0R_1R_2+V_1R_0R_2+V_2R_0R_1}{R_1R_2+R_0R_2+R_0R_1}=V_X\]
Note: the \(V_X\) is the unmarked voltage point on the schematic !

It is easy to see the calculation scheme easily adjusts for N voltages all connecting to the single \(V_X\)
\[V_{X_N}=\frac{\displaystyle{\sum_{i=0}^{N-1}V_i\frac{\displaystyle{\prod_{k=0}^{N-1}R_k}}{R_i}}}{\displaystyle{\sum_{i=0}^{N-1}\frac{\displaystyle{\prod_{k=0}^{N-1}R_k}}{R_i}}}\]
thus BWD chek ::
for N=2 :
\[V_X=\frac{V_1R_0+V_0R_1}{R_0+R_1}\]
incase of the \(V_0=0\) it reduces to a trivial 2 resistor divider formula :
\[V_X=V_1\frac{R_0}{R_0+R_1}\]

Simulation example/chk. for N=4 :



[Eop]

Wednesday, July 1, 2020

INA formula chk



\[E_1+\left({V_X-E_1}\right)·\frac{R_2}{R_6+R_2}=E_2+\left({V_R-E_2}\right)·\frac{R_5}{R_7+R_5}\]
\[E_1+\left({E_2-E_1}\right)·\frac{R_1}{R_1+R_4+R_3}=V_1\qquad\frac{E_1-V_1}{R_1}=\frac{E_1-E_2}{R_{\Sigma3}}\]
\[E_2+\left({E_1-E_2}\right)·\frac{R_4}{R_1+R_4+R_3}=V_2\qquad\frac{V_2-E_2}{R_4}=\frac{E_1-E_2}{R_{\Sigma3}}\]
\[E_1=\frac{R_1}{R_4}\left({V_2-E_2}\right)+V_1\qquad E_2=\frac{R_4}{R_1}\left({V_1-E_1}\right)+V_2\]
\[E_2-E_1+\frac{\left({E_1-E_2}\right)R_4+\left({E_1-E_2}\right)R_1}{R_{\Sigma3}}=V_2-V_1\]

\[1-\frac{R_1+R_4}{R_{\Sigma3}}=\frac{V_2-V_1}{E_2-E_1}=\frac{V_2-V_1}{E_2-\frac{R_1}{R_4}\left({V_2-E_2}\right)-V_1}=\frac{V_2-V_1}{\frac{R_4}{R_1}\left({V_1-E_1}\right)+V_2-E_1}\]
\[E_2\left({1+\frac{R_1}{R_4}}\right)-\left({V_2\frac{R_1}{R_4}+V_1}\right)=\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}\]
 \[E_1\left({1+\frac{R_4}{R_1}}\right)-\left({V_2+V_1\frac{R_4}{R_1}}\right)=-\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}\]
\[E_2=\frac{\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}+V_2\frac{R_1}{R_4}+V_1}{1+\frac{R_1}{R_4}}=\frac{\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}R_4+V_2R_1+V_1R_4}{R_1+R_4}\]
\[E_1=\frac{-\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}+V_2+V_1\frac{R_4}{R_1}}{1+\frac{R_4}{R_1}}=\frac{-\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}R_1+V_2R_1+V_1R_4}{R_1+R_4}\]
\[.\ .\ .\]
\[V_X\frac{R_2}{R_6+R_2}-V_R\frac{R_5}{R_7+R_5}=E_2\frac{R_7}{R_7+R_5}-E_1\frac{R_6}{R_6+R_2}\]

\[IF\ :\ \cases{R_1=R_4=R_A\\ R_3=R_D\\ R_6=R_7=R_F\\ R_2=R_5=R_G}\]
\[E_1=\frac{\cancel{R_A}\left({V_2+V_1}\right)-\frac{V_2-V_1}{1-\frac{2R_A}{2R_A+R_D}}\cancel{R_A}}{2\ \cancel{R_A}}=\frac{V_2+V_1}2-\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}\]
\[E_2=\frac{\cancel{R_A}\left({V_2+V_1}\right)+\frac{V_2-V_1}{1-\frac{2R_A}{2R_A+R_D}}\cancel{R_A}}{2\ \cancel{R_A}}=\frac{V_2+V_1}2+\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}\]
\[.\ .\ .\]

\[\left({V_X-V_R}\right)\frac{R_G}{\cancel{R_F+R_G}}=\left[{\left({\cancel{\frac{V_2+V_1}2}+\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}}\right)-\left({\cancel{\frac{V_2+V_1}2}-\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}}\right)}\right]\frac{R_F}{\cancel{R_F+R_G}}\]
\[\boxed{\frac{V_X-V_R}{V_2-V_1}=\frac{R_F}{R_G}·\frac{2R_A+R_D}{R_D}=\frac{R_6}{R_2}·\frac{2R_1+R_3}{R_3}}\]

dd


[Eop]

Tuesday, June 30, 2020

More Op-Amp biasing schemes


\[\frac{V_X-V_R}{V_H-V_L}=\frac{R_F}{R_G}\]


\[IF\ \cases{V_X\ne V_R\\ R\ \rightarrow\ L\ ,\ U\ \rightarrow\ D\\ R_0=R_2\\ R_1=R_3}\]
\[V_L+\left({V_X-V_L}\right)\frac{R_G}{R_F+R_G}=V_H+\left({V_R-V_H}\right)\frac{R_G}{R_F+R_G}\]
\[\left({V_H-V_L}\right)\frac{R_F+R_G}{R_G}=\left({V_X-V_L}\right)-\left({V_R-V_H}\right)=\left({V_X-V_R}\right)+\left({V_H-V_L}\right)\]
\[\frac{V_X-V_R}{V_H-V_L}=\frac{R_F+R_G}{R_G}-1=\frac{R_F}{R_G}\]

\[IF\ \cases{V_X=V_R\\ R\ \rightarrow\ L\ ,\ U\ \rightarrow\ D\\ R_0\ne R_2\\ R_1\ne R_3}\]
\[{}^{see\ the\ optimizations\ below\ :}\ \frac{V_X}{V_S}=\frac{R_BR_F}{R_D\left({R_B-R_F}\right)}\]


\[V_R+\left({V_X-V_R}\right)\frac{R_G}{R_F+R_G}=V_S+\left({V_X-V_S}\right)\frac{R_D}{R_B+R_D}\]
\[\left({V_S-V_R}\right)=\left({V_X-V_R}\right)\frac{R_G}{R_F+R_G}-\left({V_X-V_S}\right)\frac{R_D}{R_B+R_D}\]
\[\boxed{V_R=0\ :\ }\ V_S=V_X\frac{R_G}{R_F+R_G}-\left({V_X-V_S}\right)\frac{R_D}{R_B+R_D}\]
\[V_S\left({1-\frac{R_D}{R_B+R_D}}\right)=V_X\left({\frac{R_G}{R_F+R_G}-\frac{R_D}{R_B+R_D}}\right)\]
\[\frac{V_X}{V_S}=\frac{\frac{R_B}{R_B+R_D}}{\frac{R_G}{R_F+R_G}-\frac{R_D}{R_B+R_D}}=\frac{R_B}{\frac{R_B+R_D}{R_F+R_G}R_G-R_D}=\ ...\]
\[\left({preferably}\right)\ also\ :\ \frac1{R_F}+\frac1{R_G}=\frac1{R_B}+\frac1{R_D}\ ...\frac{R_B+R_D}{R_F+R_G}=\frac{R_BR_D}{R_FR_G}\]
\[...\ =\frac{R_B}{\frac{R_BR_D}{R_F\cancel{R_G}}\cancel{R_G}-R_D}=\frac{R_BR_F}{R_D\left({R_B-R_F}\right)}\]

~~~~~~~~~~~~~~~
simulation example in Falstad
~~~~~~~~~~~~~~~

[Eop]

Another Diff. op.-Amp. circuit


\[\frac{V_X-V_R}{V_H-V_L}=\frac{R_AR_F}{R_AR_V+R_G\left({R_A+R_V}\right)}\]


\[V_D=\frac{V_CR_{11}R_3+V_XR_0R_3+V_LR_0R_{11}}{R_{11}R_3+R_0R_3+R_0R_{11}}\]
\[V_U=\frac{V_CR_{22}R_5+V_RR_4R_5+V_HR_4R_{22}}{R_{22}R_5+R_4R_5+R_4R_{22}}\]
\[FROM\ :\ V_X-V_R=\left({V_U-V_D}\right)\frac{R_F}{R_G}\]
\[IF\ :\ \cases{R_1=R_2=R_F\\ R_{10}=R_{20}=R_G\\ R_0=R_4=R_A\\ R_3=R_5=R_V}\]
\[\boxed{!\ note\ that\ the\ above\ condition\ makes\ the\ biasing\ invariant\ of\ the\ \mathbf{V_C}}\]
 \[\left({V_X-V_R}\right)\frac{R_G}{R_F}=
\frac{\underline{V_C\left({R_F+R_G}\right)R_V}+\boxed{V_RR_AR_V}+V_HR_A\left({R_F+R_G}\right)}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)}-\frac{\underline{V_C\left({R_F+R_G}\right)R_V}+\boxed{V_XR_AR_V}+V_LR_A\left({R_F+R_G}\right)}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)}\]
\[\left({V_X-V_R}\right)\left({\frac{R_G}{R_F}+\frac{R_AR_V}{R_{\Sigma3}}}\right)=\left({V_H-V_L}\right)\frac{R_A\left({R_F+R_G}\right)}{R_{\Sigma3}}\]
\[\frac{V_X-V_R}{V_H-V_L}=\frac{R_A\left({R_F+R_G}\right)}{\cancel{R_{\Sigma3}}}·\frac{R_F·\cancel{R_{\Sigma3}}}{R_GR_{\Sigma3}+R_AR_VR_F}=\]
\[=\frac{R_A\left({R_F+R_G}\right)\frac{R_F}{R_G}}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)+R_AR_V\frac{R_F}{R_G}}=\]
\[=\frac{R_A\cancel{\left({R_F+R_G}\right)}\frac{R_F}{R_G}}{\cancel{\left({R_F+R_G}\right)}\left({R_A+R_V}\right)+R_AR_V\frac{\cancel{\left({R_F+R_G}\right)}}{R_G}}=\]

\[=\frac{R_AR_F}{R_AR_V+R_G\left({R_A+R_V}\right)}\]

a simulation example ::


[Eop]

Saturday, June 27, 2020

Differential Op-Amp formulas check



the case for :
\[\cases{signal\ :\ U_S=U_1\\ reference\ :\ U_R=U_0\\ gain\ :\ R_G=R_0\\ feedback\ :\ R_F=R_1\\ output\ :\ U_O=U_X}\]
\[U_R=U_\overline{IN}=U_S+\left({U_O-U_S}\right)·\frac{R_G}{R_G+R_F}\]
\[U_S-U_R=-\left({U_O-U_R+U_R-U_S}\right)·\frac{R_G}{R_G+R_F}\]
\[\frac{U_O-U_R}{U_S-U_R}-1=A_V-1=-1-\frac{R_F}{R_G}\]
\[\boxed{A_V=-\frac{R_F}{R_G}}\]
\[\begin{align*}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad  \\ \hline \end{align*}\]
\[\cases{signal\ :\ U_S=U_0\\ reference\ :\ U_R=U_1}\]
\[U_S=U_\overline{IN}=U_R+\left({U_O-U_R}\right)·\frac{R_G}{R_G+R_F}\]
\[U_S-U_R=\left({U_O-U_R}\right)·\frac{R_G}{R_G+R_F}\]
\[\frac{U_O-U_R}{U_S-U_R}=\boxed{A_V=1+\frac{R_F}{R_G}}\]



\[\frac{U_Y}{U_1}=\frac{R_0+R_1}{R_0}\qquad \frac{U_X-U_0}{U_Y-U_0}=-\frac{R_3}{R_2}\\ {\ }\]
\[\boxed{U_X=}\ U_0\left({\frac{R_2+R_3}{R_2}}\right)-\frac{R_3}{R_2}U_1\left({\frac{R_0+R_1}{R_0}}\right)\ {^?= {}_?}\ \mathbf{...}\ =\left({U_0-U_1}\right)\frac{R_2+R_3}{R_2}\ \boxed{=\Delta U_{IN}\left({1+\mathbf{M}}\right)}\\ {\ }\]
\[?\qquad \frac{R_2+R_3}{R_2}=\frac{R_3R_0+R_3R_1}{R_0R_0}\ {^?= {}_?}\ ...\ =\frac{R_3\frac{R_0}{R_1}+R_3}{\frac{R_0}{R_1}R_2}=\frac{R_3\frac{R_3}{R_2}+R_3}{\frac{R_3}{R_2}R_2}=\frac{R_2+R_3}{R_2}\\ {\ }\]
\[R_0=\frac{R_3\left({R_0+R_1}\right)}{R_3+R_2}\\ {\ }\]
\[\cases{\underline{R_0R_3}+R_0R_2=\underline{R_0R_3}+R_1R_3\\ {\ }\\ \boxed{R_0R_2=R_1R_3}}\qquad \frac{R_3}{R_2}=\frac{sR_0}{sR_1}=\mathbf{M}\qquad \mathbf{...} \uparrow\]


some tests :

MAX input impedance test :




Max. frequency TEST :




[Eop]

Wednesday, May 27, 2020

Initialization fix for an old simple square root algorithm


. . . it's multiple proven that in general situation the iteration formula :
\[\sqrt{A}\leftarrow a_{n+1}=\frac{\frac{A}{a_n}+a_n}2\]
gives the fastest convergence , initialization :
\[a_0=A\rightarrow a_1=a_{1_1}=\frac{A+1}2\]

however i just explored a different approach with iterative formula :
\[\sqrt{A}\leftarrow a_{n+1}=\frac{2Aa_n}{A+a_n^2}=\frac2{\frac1{a_n}+\frac{a_n}A}=\frac{2A}{\frac A{a_n}+a_n}=\frac A{\frac{\frac{A}{a_n}+a_n}2}\]
which has an initialization :
\[a_0=1\rightarrow a_1=a_{1_2}=\frac{2A}{A+1}=1+\frac{A-1}{A+1}\]

the "Old" initialization gives quite large positive error ... while my "Latest" initialization gives quite large negative error . . . however the both averaged gives more reasonable positive error , where the :
\[a_1=a_{1_3}=\frac{a_{1_1}+a_{1_2}}2=\frac{A+1}4+\frac{A}{A+1}\]

while for each \(a_n\) where \(n>1\) the first iteration formula on this page applies

...

yet a lesser negative error is got by combining the two first initializations as :
\[a_1=a_{1_4}=\frac{2a_{1_1}a_{1_2}}{a_{1_1}+a_{1_2}}=\frac1{\frac{A+1}{4A}+\frac1{A+1}}=\frac{A}{a_{1_3}}\]

...

+ yet a significantly lesser positive error is got by combining the two last initializations as :
\[a_1=a_{1_5}=\frac{a_{1_3}+a_{1_4}}2=\frac{a_{1_3}+\frac{A}{a_{1_3}}}2\]

the last formula is actually the value of \(a_2\) for \(a_{1_3}\) . . . so , . . .

. . . anyway it give us quite accurate estimation formula for the near A=1 , as :

\[\sqrt{A}≈a=\frac{\frac{A+1}4+\frac A{A+1}+\frac A{\frac{A+1}4+\frac A{A+1}}}2\]

the error ≤ about 5% - from \(\frac1{20}...20\)


[Eop]

Thursday, April 16, 2020

Right Triangle



\( α+ß=\frac{π}2=90°\ ,\ R=\frac{C}2 \)

\( r=\sqrt{{\left({\frac{C}2}\right)}^2+\frac{A·B}2}-\frac{C}2←\cases{A=r+x\\ B=r+y\\ C=x+y} \)

\( \frac{a}h=\frac{h}b=\frac{A}B=tan\ ß=\frac1{tan\ α}\)

\( a·b=h^2 \)

\( a+b=C \)

\( A^2+B^2=C^2={\left({a+b}\right)}^2=a^2+2·a·b+b^2 \)

\( A^2=a^2+h^2=a^2+a·b=a·\left({a+b}\right)=a·C \)

\( B^2=b^2+h^2=b^2+b·a=b·\left({b+a}\right)=b·C \)

\( a=\frac{A^2}C \)

\( b=\frac{B^2}C \)

\( h=\frac{A·B}C=\sqrt{a·b} \)

 \( S=\frac{A·B}2=\frac{\sqrt{a·C·b·C}}2=\frac{h·C}2=\frac{\frac{A·B}C·C}2 \)

 \( P=A+B+C=A+B+\sqrt{A^2+B^2}=\sqrt{a·C}+\sqrt{b·C}+\sqrt{C·C}=\sqrt{C}·\left({\sqrt{a}+\sqrt{b}+\sqrt{a+b}}\right) \)

\( b=h^2\ ,\ a=1\ →\ A^2=C=h^2+1\ ,\ B^2=b·A^2=b·C=h^2·\left({h^2+1}\right)\ ,\ R=\frac{C}2 \)


[Eop]

Wednesday, March 25, 2020

About the Quadratic Equation


Derivation of the solutions ::
\(x^2+px+q=0=\left({x-u}\right)\left({x-v}\right)=x^2-\left({u+v}\right)x+uv\)
\(p=2a\)
\(x^2+2ax+a^2-a^2+q=0\)
\(x+a=±\sqrt{a^2-q}\)
\(a=\frac p2\)
\(x=-\frac p2±\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_1=-\frac p2-\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_2=-\frac p2+\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_2-x_1=2\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_2+x_1=-p\)
\(x_2=-p-x_1\)
\(x_1=-p-x_2\)
\(x+p+\frac qx=0\)
\(\displaystyle{x=-p-\frac qx\quad \rightarrow \quad x_n=x_n+x_\overline{n}-\frac q{x_n}}\)
\(\displaystyle{x_n=\frac q{x_\overline{n}}\ \equiv\ x_nx_\overline{n}=q\ |\ about:\ q=uv}\)

Example ::
\(\mathbf{p}\)\(\mathbf{q}\)\(\mathbf{x_n}\) \(\mathbf{x_1}\\ -p-x_2\\ \displaystyle{\frac q{x_\overline{n}}}\) \(\mathbf{x_2}\\ -p-x_1\\ \displaystyle{\frac q{x_\overline{n}}}\)
\(-1\)\(-1\) \(-\frac{-1}2±\sqrt{{\left({\frac{-1}2}\right)}^2-\left({-1}\right)}=\)
\(\frac{1±\sqrt{5}}2=\)
\(=\cases{-\frac{\sqrt{5}-1}2\\ \frac{\sqrt{5}+1}2}\)
\(=\cases{-\frac{5-1}{2\left({\sqrt{5}+1}\right)}\\ \frac{5-1}{2\left({\sqrt{5}-1}\right)}}\)
\(=\cases{\frac{-2}{\sqrt{5}+1}\\ \frac2{\sqrt{5}-1}}\)
\(\frac{-2}{\sqrt{5}+1}\mathbf{=}\)
\(\mathbf{=}-\left({-1}\right)-\frac{2}{\sqrt{5}-1}=\)
\(=1-\frac{\sqrt{5}+1}2=\)
\(=-\frac{-2+\sqrt{5}+1}2=\)
\(=-\frac{\sqrt{5}-1}2=\)
\(=-\frac2{\sqrt{5}+1}\)
\(\mathbf{=}\frac{-1}{\left({\frac2{\sqrt{5}-1}}\right)}=\)
\(=-\frac{\sqrt{5}-1}2=\)
\(=\frac{-2}{\sqrt{5}+1}\)
\(\frac2{\sqrt{5}-1}\mathbf{=}\)
\(\mathbf{=}-\left({-1}\right)-\frac{-2}{\sqrt{5}+1}=\)
\(=1+\frac{\sqrt{5}-1}2=\)
\(=\frac{2+\sqrt{5}-1}2=\)
\(=\frac{\sqrt{5}+1}2=\)
\(=\frac2{\sqrt{5}-1}\)
\(\mathbf{=}\frac{-1}{\left({\frac{-2}{\sqrt{5}+1}}\right)}=\)
\(=\frac{\sqrt{5}+1}2=\)
\(=\frac2{\sqrt{5}-1}\)

Tuesday, March 24, 2020

Dynamic Formulas for the Capacitor and for the Inductor


Charging the capacitor from the CV(=Vs) src. ::
The voltage drop on the series resistor \[V_R=V_S-V_C\]
\[t_{0_{↑}^{↑}→V_C}=-R·C·ln\left({1-\frac{V_C}{V_S}}\right)=R·C·ln\frac{V_S}{V_R}\]
\[t_{V_{1_C}{}_{↑}^{↑}→V_{2_C}}=R·C·ln\frac{V_S-V_{1_C}}{V_S-V_{2_C}}=R·C·ln\frac{V_{1_R}}{V_{2_R}}\]
Dis-charging the capacitor through a fixed value resistor ::
\[t_{V_{2_C}{}_{↓}^{↓}→V_{1_C}}=-R·C·ln\frac{V_{1_C}}{V_{2_C}}=R·C·ln\frac{V_{2_C}}{V_{1_C}}\]

"Charging" the inductor from the CV(=Vs) src. ::
The peak current \[I_{MAX}=\frac{V_S}R\]
\[t_{0_{↑}^{↑}→I_L}=-\frac LR·ln\left({1-\frac{I_L}{I_{MAX}}}\right)\]
\[t_{I_{1_L}{}_{↑}^{↑}→I_{2_L}}=\frac LR·ln\frac{I_{MAX}-I_{1_L}}{I_{MAX}-I_{2_L}}\]
"Dis-charging" the inductor through a fixed value resistor ::
\[t_{I_{2_L}{}_{↓}^{↓}→I_{1_L}}=\frac LR·ln\frac{I_{2_L}}{I_{1_L}}\]


[Eop]

Monday, March 23, 2020

Diluting the solution


If there is solution with the concentration \(x=\frac b{b+a}\) and we need to get the solution with concentration \(y=\frac b{b+c}\) then from \(x\left({b+a}\right)=b=y\left({b+c}\right)\) we get the ratio of masses \(\displaystyle{\frac xy=\frac{b+c}{b+a}=\frac{m_{FINAL}}{m_{INITIAL}}}\) . . . so - if the \(\displaystyle{m_{FINAL}}\) is given we need the \(\displaystyle{m_{INITIAL}=\frac yx·m_{FINAL}}\) of the initial solution , the amount of water needed to be added is \(c-a=\mathbf{d}\) , from \(\displaystyle{\frac xy=\frac{m_F}{m_I}=1+\frac d{m_I}=\frac1{1-\frac d{m_F}}}\) we see that \(\displaystyle{d=\left({\frac xy-1}\right)·m_I=\left({1-\frac yx}\right)·m_F}\) . . . checking
\(\displaystyle{d=\left({\frac xy-1}\right)·m_I=\left({\frac xy-1}\right)·\frac yx·m_F}\) and
\(\displaystyle{d=\left({1-\frac yx}\right)·m_F=\left({1-\frac yx}\right)·\frac xy·m_I}\)
PS! -- the below DEMO works and "in reverse" for the initial percentage being less than the final ... the result is given as a negative amount of the water to be "added" --e.g.-- describing the amount of water to be (evaporated/)extracted from the solution ... Now updated! to match the possible concentrating option ...
▼ ▼ ▼
► ► ► ◄ ◄ ◄
▲ ▲ ▲

. . . a Q.C. (in MSO Excel) for some non-intuitive cases ::


Friday, March 20, 2020

Physics


Linear Circular
Time \(t\ \left({s}\right)\) Time \(t\ \left({s}\right)\)
Mass \(m\ \left({kg}\right)\) Moment of inertia \(I=\sum{m_i·r_i}\ \left({kg·m^2}\right)\)
Distance \(s\ \left({m}\right)\) Angle \(\overrightarrow{φ}\ \left({rad=1}\right)\)
Velocity \(v\ \left({\frac ms}\right)\) Angular velocity \(\overrightarrow{ω}=\frac{∂φ}{∂t}=\frac vR\ \left({\frac {rad}s=\frac1s}\right)\)
Acceleration \(a\ \left({\frac m{s^2}}\right)\) Angular_acceleration \(\overrightarrow{ɛ}=\frac{∂ω}{∂t}=\frac{a_{\tau}}R\ \left({\frac{rad}{s^2}=\frac1{s^2}}\right)\)
Impulse \(p=m·v=F·dt\ \left({N·s}\right)\) Angular momentum \(N=I·\overrightarrow{ω}=\overrightarrow{R}×\overrightarrow{p}\ \left({\frac{kg·m^2}s}\right)\)
Force \(F=\frac{∂p}{∂t}=m·a\ \left({N}\right)\) Torque \(M=I·\overrightarrow{ɛ}=\overrightarrow{R}×\overrightarrow{F}\ \left({N·m}\right)\)
Energy \(E=\frac{m·v^2}2=m·a·s\ \left({J}\right)\) Energy \(W=\frac{I·ω^2}2=I·ɛ·φ\ \left({J}\right)\)
Work \(A=F·∂s·Cos\ φ\ \left({J}\right)\) Work \(A=M·∂φ\ \left({J}\right)\)
Power \(P=\frac{∂A}{∂t}\ \left({W}\right)\) Power \(P=\frac{∂W}{∂t}\ \left({W}\right)\)
\(d\left({m·\overrightarrow{v}}\right)=\overrightarrow{F}·dt\) \(d\left({I·\overrightarrow{ω}}\right)=\overrightarrow{M}·dt\)

Thursday, March 19, 2020

p+ , p , x(T) , f(x)


Form the \(x^2-xT-1=0\) where \(T\in\mathbb{R}^{+}\ ;\ T≠0\)
\(x-\frac1x=T\ →\ \frac xT=\frac{xT+1}{xT}=\frac{x+\frac1T}x\)
Def.: \(x≡p^+\) and \(\frac1x≡p^-\)
\(p^+=\frac{\sqrt{T^2+4}+T}2\ →\ p^-=\frac1{p^+}=\frac2{\sqrt{T^2+4}+T}=\frac{\sqrt{T^2+4}-T}2\)

Def.: \(x\left({T}\right)=T+p^-\left({\frac1x}\right)=T+\frac{\sqrt{T^2+4}-T}2=\frac{\sqrt{T^2+4}+T}2\) Def.: \(f\left({x}\right)≡f\left({x_T}\right)≡x\left({T}\right)\)

The properties of the \(f\left({x}\right)\) :
  1. \(f\left({-x}\right)=\frac1{f\left({x}\right)}=f\left({x}\right)-x\)
    \(\frac1{f\left({-x}\right)}=f\left({x}\right)=f\left({-x}\right)+x\)
  2. \(f\left({-x}\right)+x=\frac1{f\left({x}\right)-x}\)
  3. \(x·f\left({x}\right)-x·f\left({-x}\right)=x^2\)
    \(x·f\left({-x}\right)-x·f\left({x}\right)=-x^2\)


NULL


testing it out . . .

\(\displaystyle{{e}^{{e}^{{e}^{{e}^{e}}}}}\)

over-/under-line :
\[\begin{array}{|c|c|c|} \hline \overline{A}+\overline{B}=\overline{AB} & \overline{A}\ \overline{B}=\overline{A+B} & A\overline{B}+\overline{A}B=A⊕B\\ \hline {R\\ _{NORMAL}} & {\mathbf{R}\\ _{BOLD}} & {\mathbb{R}\\ _{OUTLINE}}\\ \hline \underline{UNDERLINE} & \overrightarrow{VECTOR} & {A·\cancel{B}\\ _{CANCELING\ ^{1)}\ AN\ OPERAND}} \\ \hline \end{array} \] about 1) MathJax TeX and LaTeX Support — MathJax 2.7 documentation - TeX and LaTeX extensions