Processing math: 15%

Saturday, October 24, 2020

Re :: Pos. Feedback Op Amp


Definitions ::

1R=1R1+1R2=1R3+1R41R12=1R1R211R34=1R1R43

↓↓ R3R1+R3R2R3R3=R3R4==R3·R1+R2R1·R21

VB=VX·R1R1+R2VA=VS+(VXVS)·R3R3+R4

VX·R1R1+R2=VS+(VXVS)·R3R3+R4VX·(R1R1+R2R4R3+R4)=VS·(1R4R3+R4)

A_V=N=\frac{V_X}{V_S}=\frac{\frac{\cancel{R_3}+R_4\cancel{-R_3}}{\bcancel{R_3+R_4}}}{\frac{\cancel{R_1·R_3}+R_1·R_4\cancel{-R_1·R_3}+R_2·R_3}{\left({R_1+R_2}\right)·\bcancel{\left({R_3+R_4}\right)}}}=

=\frac{R_1·R_4+R_2·R_4}{R_1·R_4-R_2·R_3}=\frac{1+\frac{R_2}{R_1}}{1-\frac{R_2}{R_1}·\frac{R_3}{R_4}}

N-N·\frac{R_2}{R_1}·\frac{R_3}{R_4}=1+\frac{R_2}{R_1}

\left({N-1}\right)·R_1·R_4=R_2·\left({N·R_3+R_4}\right)


\frac{R_2}{R_1}=\frac{\left({N-1}\right·R_4)}{N·R_3+R_4}=\frac{N-1}{N·\frac{R_3}{R_4}+1}

{}^{↑↑}\ \frac{R_2}{R_1}·\left({N·\mathbf{\left({R_3·\frac{R_1+R_2}{R_1·R_2}-1}\right)}+1}\right)=N-1

\frac{R_2}{R_1}·\left({N·R_3·\frac{R_1+R_2}{R_1·R_2}-\left({N-1}\right)}\right)=N-1

\frac{R_2}{R_1}=\frac1{\frac N{N-1}·R_3·\frac{R_1+R_2}{R_1·R_2}-1}

\frac N{N-1}·R_3·\frac{\frac{R_1}{R_2}+1}{R_1}-1=\frac{R_1}{R_2}

 \frac N{N-1}·R_3·\frac{1+\frac{R_2}{R_1}}{R_1}-\frac{R_2}{R_1}=1

 \frac N{N-1}·R_3·\frac{\bcancel{\frac{R_2}{R_1}+1}}{R_1}=\bcancel{\frac{R_2}{R_1}+1}

 \frac N{N-1}=\mathbf{\frac{R_1}{R_3}}


 \frac{R_2}{R_1}=\frac{N-1}{N·\frac{R_3}{R_4}+1}=\frac1{\frac N{N-1}·\frac{R_3}{R_4}+\frac1{N-1}}=

=\frac1{\mathbf{\frac{R_1}{\cancel{R_3}}}·\frac{\cancel{R_3}}{R_4}+\frac1{N-1}}=\frac1{\frac{R_1}{R_4}+\frac1{N-1}}

\frac{R_2}{R_1}·\left({\frac{R_1}{R_4}+\frac1{N-1}}\right)=1\\ \frac1{R_4}+\frac1{R_1}·\frac1{N-1}=\frac1{R_2}\\ \frac1{R_1}·\frac1{N-1}=\frac1{R_2}-\frac1{R_4}

N-1=\frac1{R_1·\left({\frac1{R_2}-\frac1{R_4}}\right)}


N=1+\frac1{R_1·\left({\frac1{R_2}-\frac1{R_4}}\right)}{}^{↑}=^{↑}1+\frac1{R_1·\left({\frac1{R_2}+\frac1{R_3}-\frac1R}\right)}=1+\frac1{R_1·\left({\frac1{R_3}-\frac1{R_1}}\right)}=

=\boxed{A_V=1+\frac1{\frac{R_1}{R_3}-1}}

Reminder :: \frac1{R_4}=\frac1{R_2}+\frac1{R_1}-\frac1{R_3} or \cases{\frac1{R_2}=\frac1R-\frac1{R_1}\\ \frac1{R_4}=\frac1R-\frac1{R_3}}

{Def\ ::\ d=\frac{R_1}{R_3}\\ then\ :\ N-1=\frac1{d-1}\ and\ d=1+\frac1{N-1}}

if R is also given the rest can be computed ... as R_1=d·R_3

in "general" situation the LM308 likes the biasing resistance of the double 7k5 Ω --e.g.-- the R = 3.75 kΩ (for the noisy input the 100 kΩ in parallel with the 5 pF or less may be more suitable/stable however - so ... )

Related Post : More Op-Amp biasing schemes

The LTSpice Example ::


PS! the negative gain can result by the reached formula for the voltage gain -- but in practise it won't work !!!

a slew-rate versus a common mode input impedance ::



Note :: the realistic/conventional Op.-Amp.-s have the impedance value a bit lower than shown in the simulation


[Eop]

No comments: