More coverage - external links :
Fibonacci Numbers, the Golden section and the Golden String by Ron Knott , The Golden Geometry of Solids or Phi in 3 dimensions
http://www.implosiongroup.com/ , https://www.theimploder.com/science/compressions-hydrogen-atom-and-phase-conjugation , https://www.google.com/search?q=golden+ratio+wave+nesting+implosion - much likely by Dan Winter (a "snail shell guy") and associates (← i cannot recommend nor not-recommend -- never had time to focus/verify ??? = read/"buy" with a precaution ...)
dd
Compact/minimalistic - Random Facts :
Naming differences on this site : k = φ = "Phi" = "Golden Ratio"
Decimal value : k ≈ 1.6180339887498948482045868343656
Formula : 2√5−1=√5+12
Iterative : k=1+1k,kSEED=137·167020·707=137·(132−2)(13+7)·((3!)!−13)=[437=137+300]=(130+7)·(437−270)(13+7)·(437+270)
As a number system : k = x(D) where D=2 -- see below ↓↓
From poly-equation : k2−k−1=0
k=−−12±√(−−12)2−(−1)={k−1k
Basic property 1 :
kn±1=±kn+kn∓1(not forgetting that :: kn±1=kn·k±1)
Basic property 2 (applies to all series type of an+1=an+an−1) ::
aM(n+1)+n0=Look(M)·aM(n)+n0−(−1)M·aM(n−1)+n0
where M , n , n0 are ±Integers ,
a is ±Realletter ,
Look(M)=kM+(−1)M·k−M is the M-th indexed member of the Lucas-series
3 −2 , −1 −1 , 2 0 , 1 1 , 3 2 , 4 3 , 7 4 , 11 5 , 18 6 , 29 7
example ::
{k25=11·k20+k15 // k5·1+205·5=11·k5·0+205·4+k5·(−1)+205·3 k36=18·k30−k24 // {17.94427191·k30=18·1·k30−0.05572809·k3033385282=33488964−103682 k69=29·k62+k55 // k70−149+20=29·k63−142+20+k56−135+20
Def. :
Fibo(K)=kM−(−1)M·k−M√5 is the K-th indexed member of the Fibonacci-series
−1 −2 , 1 −1 , 0 0 , 1 1 , 1 2 , 2 3 , 3 4 , 5 5 , 8 6 , 13 7
example.2 ::
{Fibo(10)=Look(3)·Fibo(7)+Fibo(4) // 55=4·13+3 Look(N)=Look(0)·Look(N)−Look(N)=(2−1)·Look(N)
Functions D(x) , x(D) ::
Def. & properties :
x(D)·x(1D)=x(D)+x(1D) ⇒ 1x(D)+1x(1D)=1 ⇒ x(D)−1=1x(1D)−1
x(1D)=x(D)D , x(D)=x(1D)1D , x(D)√D=x(1D)√1D
Def. : D(x)=1−ln(x−1)ln x=ln(1−1x)ln 1xD(x)=1−logx(x−1)=log1x(1−1x)
Def. : xD−xD−1−1=0 ⇒ xD−1=xDx=xD−22−x=1x−1
D = 1 | x = 2 | 12 = 0.1(1)2 = 0.11111111...2 | |||
D = 2 | x = k ≈ 1.618 | 10k = 1.1k = 1.01(01)k = 0.1(1)k = 0.11111111...k | |||
D = 3 | x = t ≈ 1.466 |
|
[Eop]
[Eop]
[Eop]
No comments:
Post a Comment