Processing math: 100%

Golden Ratio


More coverage - external links :

Fibonacci Numbers, the Golden section and the Golden String by Ron Knott , The Golden Geometry of Solids or Phi in 3 dimensions

http://www.implosiongroup.com/ , https://www.theimploder.com/science/compressions-hydrogen-atom-and-phase-conjugation , https://www.google.com/search?q=golden+ratio+wave+nesting+implosion - much likely by Dan Winter (a "snail shell guy") and associates (← i cannot recommend nor not-recommend -- never had time to focus/verify ??? = read/"buy" with a precaution ...)

dd


Compact/minimalistic - Random Facts

Naming differences on this site : k = φ = "Phi" = "Golden Ratio"

Decimal value : k ≈  1.6180339887498948482045868343656

Formula : 251=5+12

Iterative : k=1+1k,kSEED=137·167020·707=137·(1322)(13+7)·((3!)!13)=[437=137+300]=(130+7)·(437270)(13+7)·(437+270)

As a number system : k = x(D) where D=2 -- see below ↓↓


From poly-equation : k2k1=0

k=12±(12)2(1)={k1k


Basic property 1 :

kn±1=±kn+kn1(not forgetting that :: kn±1=kn·k±1)


Basic property 2 (applies to all series type of an+1=an+an1) ::

aM(n+1)+n0=Look(M)·aM(n)+n0(1)M·aM(n1)+n0

where M , n , n0 are ±Integers ,
a is ±Realletter ,
Look(M)=kM+(1)M·kM is the M-th indexed member of the Lucas-series

3 2 , 1 1 , 2 0 , 1 1 , 3 2 , 4 3 , 7 4 , 11 5 , 18 6 , 29 7

example ::

{k25=11·k20+k15 // k5·1+205·5=11·k5·0+205·4+k5·(1)+205·3 k36=18·k30k24 // {17.94427191·k30=18·1·k300.05572809·k3033385282=33488964103682 k69=29·k62+k55 // k70149+20=29·k63142+20+k56135+20

Def. :

Fibo(K)=kM(1)M·kM5 is the K-th indexed member of the Fibonacci-series

1 2 , 1 1 , 0 0 , 1 1 , 1 2 , 2 3 , 3 4 , 5 5 , 8 6 , 13 7

example.2 ::

{Fibo(10)=Look(3)·Fibo(7)+Fibo(4) // 55=4·13+3 Look(N)=Look(0)·Look(N)Look(N)=(21)·Look(N)


Functions D(x) , x(D) ::

Def. & properties :

x(D)·x(1D)=x(D)+x(1D)  1x(D)+1x(1D)=1  x(D)1=1x(1D)1

x(1D)=x(D)D , x(D)=x(1D)1D , x(D)D=x(1D)1D

Def. : D(x)=1ln(x1)ln x=ln(11x)ln 1xD(x)=1logx(x1)=log1x(11x)

Def. : xDxD11=0  xD1=xDx=xD22x=1x1

D = 1x = 212 = 0.1(1)2 = 0.11111111...2
D = 2x = k ≈ 1.61810k = 1.1k = 1.01(01)k = 0.1(1)k = 0.11111111...k
D = 3x = t ≈ 1.466
100t = 10.1t = 10.01(001)t = 1.011(011)t  .101(101)t
+
  0.010(010)t
  = 0.1(1)t = 0.11111111...t

the above table derives from : xD1=xD1=xx1=111x 
about Geometric series (← notice the r⁰ at the beginning of the S = 1 + r + r²... so , S1=...=xD1)
 
x(D) graph. ( x - vert. , D - horiz. ) :
 
note : The x is a number system base that has a FP base !!!
 



[Eop]


[Eop]


[Eop]

No comments: