\[E_1+\left({V_X-E_1}\right)·\frac{R_2}{R_6+R_2}=E_2+\left({V_R-E_2}\right)·\frac{R_5}{R_7+R_5}\]
\[E_1+\left({E_2-E_1}\right)·\frac{R_1}{R_1+R_4+R_3}=V_1\qquad\frac{E_1-V_1}{R_1}=\frac{E_1-E_2}{R_{\Sigma3}}\]
\[E_2+\left({E_1-E_2}\right)·\frac{R_4}{R_1+R_4+R_3}=V_2\qquad\frac{V_2-E_2}{R_4}=\frac{E_1-E_2}{R_{\Sigma3}}\]
\[E_1=\frac{R_1}{R_4}\left({V_2-E_2}\right)+V_1\qquad E_2=\frac{R_4}{R_1}\left({V_1-E_1}\right)+V_2\]
\[E_2-E_1+\frac{\left({E_1-E_2}\right)R_4+\left({E_1-E_2}\right)R_1}{R_{\Sigma3}}=V_2-V_1\]
\[1-\frac{R_1+R_4}{R_{\Sigma3}}=\frac{V_2-V_1}{E_2-E_1}=\frac{V_2-V_1}{E_2-\frac{R_1}{R_4}\left({V_2-E_2}\right)-V_1}=\frac{V_2-V_1}{\frac{R_4}{R_1}\left({V_1-E_1}\right)+V_2-E_1}\]
\[E_2\left({1+\frac{R_1}{R_4}}\right)-\left({V_2\frac{R_1}{R_4}+V_1}\right)=\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}\]
\[E_1\left({1+\frac{R_4}{R_1}}\right)-\left({V_2+V_1\frac{R_4}{R_1}}\right)=-\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}\]
\[E_2=\frac{\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}+V_2\frac{R_1}{R_4}+V_1}{1+\frac{R_1}{R_4}}=\frac{\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}R_4+V_2R_1+V_1R_4}{R_1+R_4}\]
\[E_1=\frac{-\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}+V_2+V_1\frac{R_4}{R_1}}{1+\frac{R_4}{R_1}}=\frac{-\frac{V_2-V_1}{1-\frac{R_1+R_4}{R_{\Sigma3}}}R_1+V_2R_1+V_1R_4}{R_1+R_4}\]
\[.\ .\ .\]
\[V_X\frac{R_2}{R_6+R_2}-V_R\frac{R_5}{R_7+R_5}=E_2\frac{R_7}{R_7+R_5}-E_1\frac{R_6}{R_6+R_2}\]
\[IF\ :\ \cases{R_1=R_4=R_A\\ R_3=R_D\\ R_6=R_7=R_F\\ R_2=R_5=R_G}\]
\[E_1=\frac{\cancel{R_A}\left({V_2+V_1}\right)-\frac{V_2-V_1}{1-\frac{2R_A}{2R_A+R_D}}\cancel{R_A}}{2\ \cancel{R_A}}=\frac{V_2+V_1}2-\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}\]
\[E_2=\frac{\cancel{R_A}\left({V_2+V_1}\right)+\frac{V_2-V_1}{1-\frac{2R_A}{2R_A+R_D}}\cancel{R_A}}{2\ \cancel{R_A}}=\frac{V_2+V_1}2+\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}\]
\[.\ .\ .\]
\[\left({V_X-V_R}\right)\frac{R_G}{\cancel{R_F+R_G}}=\left[{\left({\cancel{\frac{V_2+V_1}2}+\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}}\right)-\left({\cancel{\frac{V_2+V_1}2}-\frac{V_2-V_1}2·\frac{2R_A+R_D}{R_D}}\right)}\right]\frac{R_F}{\cancel{R_F+R_G}}\]
\[\boxed{\frac{V_X-V_R}{V_2-V_1}=\frac{R_F}{R_G}·\frac{2R_A+R_D}{R_D}=\frac{R_6}{R_2}·\frac{2R_1+R_3}{R_3}}\]
dd
[Eop]
No comments:
Post a Comment