Linear | Circular |
Time t (s) | Time t (s) |
Mass m (kg) | Moment of inertia I=∑mi·ri (kg·m2) |
Distance s (m) | Angle \overrightarrow{φ}\ \left({rad=1}\right) |
Velocity v\ \left({\frac ms}\right) | Angular velocity \overrightarrow{ω}=\frac{∂φ}{∂t}=\frac vR\ \left({\frac {rad}s=\frac1s}\right) |
Acceleration a\ \left({\frac m{s^2}}\right) | Angular_acceleration \overrightarrow{ɛ}=\frac{∂ω}{∂t}=\frac{a_{\tau}}R\ \left({\frac{rad}{s^2}=\frac1{s^2}}\right) |
Impulse p=m·v=F·dt\ \left({N·s}\right) | Angular momentum N=I·\overrightarrow{ω}=\overrightarrow{R}×\overrightarrow{p}\ \left({\frac{kg·m^2}s}\right) |
Force F=\frac{∂p}{∂t}=m·a\ \left({N}\right) | Torque M=I·\overrightarrow{ɛ}=\overrightarrow{R}×\overrightarrow{F}\ \left({N·m}\right) |
Energy E=\frac{m·v^2}2=m·a·s\ \left({J}\right) | Energy W=\frac{I·ω^2}2=I·ɛ·φ\ \left({J}\right) |
Work A=F·∂s·Cos\ φ\ \left({J}\right) | Work A=M·∂φ\ \left({J}\right) |
Power P=\frac{∂A}{∂t}\ \left({W}\right) | Power P=\frac{∂W}{∂t}\ \left({W}\right) |
d\left({m·\overrightarrow{v}}\right)=\overrightarrow{F}·dt | d\left({I·\overrightarrow{ω}}\right)=\overrightarrow{M}·dt |
Friday, March 20, 2020
Physics
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment