Processing math: 22%

Friday, March 20, 2020

Physics


Linear Circular
Time t (s) Time t (s)
Mass m (kg) Moment of inertia I=mi·ri (kg·m2)
Distance s (m) Angle \overrightarrow{φ}\ \left({rad=1}\right)
Velocity v\ \left({\frac ms}\right) Angular velocity \overrightarrow{ω}=\frac{∂φ}{∂t}=\frac vR\ \left({\frac {rad}s=\frac1s}\right)
Acceleration a\ \left({\frac m{s^2}}\right) Angular_acceleration \overrightarrow{ɛ}=\frac{∂ω}{∂t}=\frac{a_{\tau}}R\ \left({\frac{rad}{s^2}=\frac1{s^2}}\right)
Impulse p=m·v=F·dt\ \left({N·s}\right) Angular momentum N=I·\overrightarrow{ω}=\overrightarrow{R}×\overrightarrow{p}\ \left({\frac{kg·m^2}s}\right)
Force F=\frac{∂p}{∂t}=m·a\ \left({N}\right) Torque M=I·\overrightarrow{ɛ}=\overrightarrow{R}×\overrightarrow{F}\ \left({N·m}\right)
Energy E=\frac{m·v^2}2=m·a·s\ \left({J}\right) Energy W=\frac{I·ω^2}2=I·ɛ·φ\ \left({J}\right)
Work A=F·∂s·Cos\ φ\ \left({J}\right) Work A=M·∂φ\ \left({J}\right)
Power P=\frac{∂A}{∂t}\ \left({W}\right) Power P=\frac{∂W}{∂t}\ \left({W}\right)
d\left({m·\overrightarrow{v}}\right)=\overrightarrow{F}·dt d\left({I·\overrightarrow{ω}}\right)=\overrightarrow{M}·dt

No comments: