Form the x2−xT−1=0 where T∈R+ ; T≠0
x−1x=T → xT=xT+1xT=x+1Tx
Def.: x≡p+ and 1x≡p−
p+=√T2+4+T2 → p−=1p+=2√T2+4+T=√T2+4−T2
Def.: x(T)=T+p−(1x)=T+√T2+4−T2=√T2+4+T2 Def.: f(x)≡f(xT)≡x(T)
The properties of the f(x) :
x−1x=T → xT=xT+1xT=x+1Tx
Def.: x≡p+ and 1x≡p−
p+=√T2+4+T2 → p−=1p+=2√T2+4+T=√T2+4−T2
Def.: x(T)=T+p−(1x)=T+√T2+4−T2=√T2+4+T2 Def.: f(x)≡f(xT)≡x(T)
The properties of the f(x) :
- f(−x)=1f(x)=f(x)−x
1f(−x)=f(x)=f(−x)+x - f(−x)+x=1f(x)−x
- x·f(x)−x·f(−x)=x2
x·f(−x)−x·f(x)=−x2
No comments:
Post a Comment