Processing math: 44%

Arithmetics


(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab±b3

a2b2=(ab)(a+b)a3±b3=(a±b)(a2ab+b2)

...


Series/Progression :

Def. : An=A1+(n1)·dSn=n·(A1+An)2=(2·A1+(n1)·d)·n2Sn3=(An2+An1+(An2An1)n3n2n1+1n2n1)·n32

 

Def : An=A1·qn1Sn=A1·qn1q1=A1·1qn1qlim

 

\displaystyle{\boxed{\lim_{n\ →\ ∞}\left({1±\frac xn}\right)^n=e^{±x}=\sum_{i=0}^{n\ →\ ∞}\frac{x^i}{i\ !}}}


\displaystyle{\sum_{i\ =\ 1}^n\ \left({2i-1}\right)\ =\ n^2\ =\ 1+3+5+7+9+11+...\\ \sum_{i\ =\ 1}^n\ 2i\ =\ n· \left({n+1}\right)\ =\ \left({0+}\right)2+4+6+8+10+12+...\\ odd\ :\ \sum_{i\ =\ 1}^m\ i\ =\ \sum_{j\ =\ 1}^{n=\frac{m+1}2}\ \left({2j-1}\right)\ +\ \sum_{k\ =\ 1}^{N=\frac{m-1}2}\ k\ =\ \left({\frac{m+1}2}\right)^2+\left({\frac{m-1}2· \left({\frac{m-1}2+1}\right)}\right)\ =\\ =\ \frac{m^2\cancel{+2m}\bcancel{+1}}4 + \frac{m^2\cancel{-2m}\bcancel{+1}+2m\bcancel{-2}}4=\frac{2m^2+2m}4=\frac{m^2+m}2\\ even\ :\ \sum_{i\ =\ 1}^m\ i\ =\ \sum_{j\ =\ 1}^{n=\frac m2}\ \left({2j-1}\right)\ +\ \sum_{k\ =\ 1}^{N=\frac m2}\ k\ =\ \left({\frac m2}\right)^2+\left({\frac m2\left({\frac m2+1}\right)}\right)=\\ =\frac{2m^2+2m}4=\frac{m^2+m}2\\ \sum_{i\ =\ 1}^n\ i\ =\ \frac{n^2+n}2\ =\ \frac{n· \left({n+1}\right)}2}

\displaystyle{\sum_{i\ =\ 1}^n\ i^2\ =\ \frac{2n^3+3n^2+n}6\ =\ \frac{n^3}3+\frac{n^2}2+\frac n6\ =\ \frac{n\left({n\left({2n+3}\right)+1}\right)}6\ =\ \frac{n\left({n+1}\right)\left({2n+1}\right)}6}

\displaystyle{\sum_{i\ =\ 1}^n\ i^3\ =\ \left[{\frac{n\left({n+1}\right)}2}\right]^2}


dd


[Eop]

No comments: