Processing math: 100%

Wednesday, March 25, 2020

About the Quadratic Equation


Derivation of the solutions ::
x2+px+q=0=(xu)(xv)=x2(u+v)x+uv
p=2a
x2+2ax+a2a2+q=0
x+a=±a2q
a=p2
x=p2±(p2)2q
x1=p2(p2)2q
x2=p2+(p2)2q
x2x1=2(p2)2q
x2+x1=p
x2=px1
x1=px2
x+p+qx=0
x=pqxxn=xn+x¯nqxn
xn=qx¯n  xnx¯n=q | about: q=uv

Example ::
pqxn x1px2qx¯n x2px1qx¯n
11 12±(12)2(1)=
1±52=
={5125+12
={512(5+1)512(51)
={25+1251
25+1=
=(1)251=
=15+12=
=2+5+12=
=512=
=25+1
=1(251)=
=512=
=25+1
251=
=(1)25+1=
=1+512=
=2+512=
=5+12=
=251
=1(25+1)=
=5+12=
=251

No comments: