Processing math: 0%

Trigonometric identities


\cases{{}\\ Cos\ -φ=Cos\ φ=Cos\left({π±φ}\right)\\ {}\\ Sin\ -φ=-Sin\ φ=Sin\left({π+φ}\right)\\ {}\\ \qquad \qquad \qquad Sin\ \mathbf{φ}=Sin\left({π-\mathbf{φ}}\right)\\ {}\\ Cos\ φ=Sin\left({φ+\frac π2}\right)\ ,\ Cos\frac π4=Sin\frac{3π}4=Sin\left({π-\mathbf{\frac π4}}\right)=Sin\mathbf{\frac π4}\\ {}\\ Sin\ Θ=Cos\left({Θ-\frac π2}\right)\ ,\ Sin\frac π4=Cos\left({-\frac π4}\right)=Cos\frac π4\\ {}}

\displaystyle{Sin\ x=\sum_{i=1}^n\left({-1}\right)^{n-1}\frac{x^{2n-1}}{\left({2n-1}\right)!}}

\displaystyle{Cos\ x=1-\sum_{i=1}^n\left({-1}\right)^{n-1}\frac{x^{2n}}{\left({2n}\right)!}}


 Sin\left({α±ß}\right)=Sin\ α·Cos\ ß±Cos\ α·Sin\ ß

 Cos\left({α±ß}\right)=Cos\ α·Cos\ ß∓Sin\ α·Sin\ ß

 Tan\left({α±ß}\right)=\frac{Tan\ α±Tan\ ß}{1∓Tan\ α·Tan\ ß}

 Cot\left({α±ß}\right)=\frac{Cot\ \mathbf{ß}·Cot\ \mathbf{α}∓1}{Cot\ \mathbf{ß}±Cot\ \mathbf{α}}


Sin\ α±Sin\ ß=2·Sin\frac{α±ß}2·Cos\frac{α∓ß}2

Cos\ α±Cos\ ß=2·{}^{Cos}_{Sin}\frac{α+ß}2·{}^{Cos}_{Sin}\frac{α-ß}2

Tan\ α±Tan\ ß=\frac{Sin\left({α±ß}\right)}{Cos\ α·Cos\ ß}

 Cot\ α±Cot\ ß=\frac{Sin\left({\mathbf{ß}±\mathbf{α}}\right)}{Sin\ \mathbf{ß}·Sin\ \mathbf{α}}


Sin^2\ α+Cos^2\ α=1=\\ =\left({Cos\ α-i·Sin\ α}\right)\left({Cos\ α+i·Sin\ α}\right)=\\ =\left({ch\ iα-sh\ iα}\right)\left({ch\ iα+sh\ iα}\right)=\\ =ch^2\ φ-sh^2\ φ

Tan^k\ α=Cot^{-k}\ α=\frac{Sin^k\ α}{Cos^k\ α}


Sin\left({2α}\right)=2·Sin\ α·Cos\ α

Cos\left({2α}\right)=Cos^2\ α-Sin^2\ α=\\ =2·Cos^2\ α-1=1-2·Sin^2\ α

Tan\left({2α}\right)=\frac{2·Tan\ α}{1-Tan^2\ α}

Cot\left({2α}\right)=\frac{Cot^2\ α-1}{2·Cot\ α}


1-Cos\ α=2·Sin^2\frac α2

1+Cos\ α=2·Cos^2\frac α2

1-Sin\ α=\left({Cos\frac α2-Sin\frac α2}\right)^2

1+Sin\ α=\left({Cos\frac α2+Sin\frac α2}\right)^2


Sin\frac α2=±\sqrt{\frac{1-Cos\ α}2}

Cos\frac α2=±\sqrt{\frac{1+Cos\ α}2}

Tan\frac α2=±\sqrt{\frac{1-Cos\ α}{1+Cos\ α}}=\frac{1-Cos\ α}{Sin\ α}=\frac{Sin\ α}{1+Cos\ α}


1+Tan^2\ α=\frac1{Cos^2\ α}

1+Cot^2\ α=\frac1{Sin^2\ α}

Sec\ α=\frac1{Cos\ α}=±\sqrt{1+Tan^2\ α}

Cosec\ α=\frac1{Sin\ α}=±\sqrt{1+Cot^2\ α}


.Sin\ αCos\ αTan\ αCot\ α
Sin\ α.\left({1-Cos^2\ α}\right)^{\frac12}\left({Tan^{-2}\ α+1}\right)^{-\frac12}\left({1+Cot^2\ α}\right)^{-\frac12}.
Cos\ α\left({1-Sin^2\ α}\right)^{\frac12}.\left({1+Tan^2\ α}\right)^{-\frac12}\left({1+Cot^{-2}\ α}\right)^{-\frac12}
Tan\ α\left({Sin^{-2}\ α-1}\right)^{-\frac12}\left({Cos^2\ α-1}\right)^{\frac12}.Cot^{-1}\ α
Cot\ α\left({Sin^{-2}\ α-1}\right)^{\frac12}\left({Cos^2\ α-1}\right)^{-\frac12}Tan^{-1}\ α.


Cos\ φ
0-101Cos\ φ\frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}2\frac{\sqrt{2+\sqrt{3}}}2\frac{\sqrt{2+\sqrt{2}}}2\frac{\sqrt{3}}2\frac{\sqrt{2+\sqrt{2-\sqrt{3}}}}2\frac{\sqrt{2}}2\frac{\sqrt{2-\sqrt{2-\sqrt{3}}}}2\frac 12\frac{\sqrt{2-\sqrt{2}}}2\frac{\sqrt{2-\sqrt{3}}}2\frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}2Cos\ φ
Sin\ φ-1010Sin\ φ\frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}2\frac{\sqrt{2-\sqrt{3}}}2\frac{\sqrt{2-\sqrt{2}}}2\frac 12\frac{\sqrt{2-\sqrt{2-\sqrt{3}}}}2\frac{\sqrt{2}}2\frac{\sqrt{2+\sqrt{2-\sqrt{3}}}}2\frac{\sqrt{3}}2\frac{\sqrt{2+\sqrt{2}}}2\frac{\sqrt{2+\sqrt{3}}}2\frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}2Sin\ φ
φ\frac{3π}2π\frac π22kπφ\frac{π}{24}\frac{π}{12}\frac π8\frac π6\frac{5π}{24}\frac π4\frac{7π}{24}\frac π3\frac{9π}{24}\frac{5π}{12}\frac{11π}{24}φ
Tan\ φ±∞0±∞0Tan\ φ\frac{\sqrt{2-\sqrt{3}}}{2+\sqrt{2+\sqrt{3}}}2-\sqrt{3}\frac1{\sqrt{2}+1}\frac1{\sqrt{3}}\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{2-\sqrt{3}}}1\frac{\sqrt{2+\sqrt{3}}}{2-\sqrt{2-\sqrt{3}}}\sqrt{3}\frac1{\sqrt{2}-1}2+\sqrt{3}\frac{\sqrt{2-\sqrt{3}}}{2-\sqrt{2+\sqrt{3}}}Tan\ φ
Cot\ φ0±∞0±∞Cot\ φ\frac{\sqrt{2-\sqrt{3}}}{2-\sqrt{2+\sqrt{3}}}2+\sqrt{3}\frac1{\sqrt{2}-1}\sqrt{3}\frac{\sqrt{2+\sqrt{3}}}{2-\sqrt{2-\sqrt{3}}}1\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{2-\sqrt{3}}}\frac1{\sqrt{3}}\frac1{\sqrt{2}+1}2-\sqrt{3}\frac{\sqrt{2-\sqrt{3}}}{2+\sqrt{2+\sqrt{3}}}Cot\ φ


arcCos\ A=±i·ln\left({A±\sqrt{A^2-1}}\right)

arcSin\ A=\left({±}\right)\ i·ln\left({±\sqrt{1-A^2}+\left({∓}\right)\ i·A}\right)

\frac i2\ ln\ \frac{1-i·A}{1+i·A}=arcTan\ A=\frac i2\ ln\ \frac{i+A}{i-A}

 \frac i2\ ln\ \frac{i·A+1}{i·A-1}=arcCot\ A=\frac i2\ ln\ \frac{A-i}{A+i}


arcTan\ A+arcCot\ A=\frac π2±2kπ

±\left({arcTan\ A-arcCot\ A}\right)=\frac i2\ ln\ \left({i·\frac{i·A∓1}{i·A±1}}\right)^2=\frac i2\ ln\ \left({-i·\frac{1∓i·A}{1±i·A}}\right)^2=\frac i2\ ln\ \left({i·\frac{A±i}{A∓i}}\right)^2=etc. ...


[Eop]

No comments: