\cases{{}\\ Cos\ -φ=Cos\ φ=Cos\left({π±φ}\right)\\ {}\\ Sin\ -φ=-Sin\ φ=Sin\left({π+φ}\right)\\ {}\\ \qquad \qquad \qquad Sin\ \mathbf{φ}=Sin\left({π-\mathbf{φ}}\right)\\ {}\\ Cos\ φ=Sin\left({φ+\frac π2}\right)\ ,\ Cos\frac π4=Sin\frac{3π}4=Sin\left({π-\mathbf{\frac π4}}\right)=Sin\mathbf{\frac π4}\\ {}\\ Sin\ Θ=Cos\left({Θ-\frac π2}\right)\ ,\ Sin\frac π4=Cos\left({-\frac π4}\right)=Cos\frac π4\\ {}}
\displaystyle{Sin\ x=\sum_{i=1}^n\left({-1}\right)^{n-1}\frac{x^{2n-1}}{\left({2n-1}\right)!}}
\displaystyle{Cos\ x=1-\sum_{i=1}^n\left({-1}\right)^{n-1}\frac{x^{2n}}{\left({2n}\right)!}}
Sin\left({α±ß}\right)=Sin\ α·Cos\ ß±Cos\ α·Sin\ ß
Cos\left({α±ß}\right)=Cos\ α·Cos\ ß∓Sin\ α·Sin\ ß
Tan\left({α±ß}\right)=\frac{Tan\ α±Tan\ ß}{1∓Tan\ α·Tan\ ß}
Cot\left({α±ß}\right)=\frac{Cot\ \mathbf{ß}·Cot\ \mathbf{α}∓1}{Cot\ \mathbf{ß}±Cot\ \mathbf{α}}
Sin\ α±Sin\ ß=2·Sin\frac{α±ß}2·Cos\frac{α∓ß}2
Cos\ α±Cos\ ß=2·{}^{Cos}_{Sin}\frac{α+ß}2·{}^{Cos}_{Sin}\frac{α-ß}2
Tan\ α±Tan\ ß=\frac{Sin\left({α±ß}\right)}{Cos\ α·Cos\ ß}
Cot\ α±Cot\ ß=\frac{Sin\left({\mathbf{ß}±\mathbf{α}}\right)}{Sin\ \mathbf{ß}·Sin\ \mathbf{α}}
Sin^2\ α+Cos^2\ α=1=\\ =\left({Cos\ α-i·Sin\ α}\right)\left({Cos\ α+i·Sin\ α}\right)=\\ =\left({ch\ iα-sh\ iα}\right)\left({ch\ iα+sh\ iα}\right)=\\ =ch^2\ φ-sh^2\ φ
Tan^k\ α=Cot^{-k}\ α=\frac{Sin^k\ α}{Cos^k\ α}
Sin\left({2α}\right)=2·Sin\ α·Cos\ α
Cos\left({2α}\right)=Cos^2\ α-Sin^2\ α=\\ =2·Cos^2\ α-1=1-2·Sin^2\ α
Tan\left({2α}\right)=\frac{2·Tan\ α}{1-Tan^2\ α}
Cot\left({2α}\right)=\frac{Cot^2\ α-1}{2·Cot\ α}
1-Cos\ α=2·Sin^2\frac α2
1+Cos\ α=2·Cos^2\frac α2
1-Sin\ α=\left({Cos\frac α2-Sin\frac α2}\right)^2
1+Sin\ α=\left({Cos\frac α2+Sin\frac α2}\right)^2
Sin\frac α2=±\sqrt{\frac{1-Cos\ α}2}
Cos\frac α2=±\sqrt{\frac{1+Cos\ α}2}
Tan\frac α2=±\sqrt{\frac{1-Cos\ α}{1+Cos\ α}}=\frac{1-Cos\ α}{Sin\ α}=\frac{Sin\ α}{1+Cos\ α}
1+Tan^2\ α=\frac1{Cos^2\ α}
1+Cot^2\ α=\frac1{Sin^2\ α}
Sec\ α=\frac1{Cos\ α}=±\sqrt{1+Tan^2\ α}
Cosec\ α=\frac1{Sin\ α}=±\sqrt{1+Cot^2\ α}
. | Sin\ α | Cos\ α | Tan\ α | Cot\ α |
---|---|---|---|---|
Sin\ α | . | \left({1-Cos^2\ α}\right)^{\frac12} | \left({Tan^{-2}\ α+1}\right)^{-\frac12} | \left({1+Cot^2\ α}\right)^{-\frac12}. |
Cos\ α | \left({1-Sin^2\ α}\right)^{\frac12} | . | \left({1+Tan^2\ α}\right)^{-\frac12} | \left({1+Cot^{-2}\ α}\right)^{-\frac12} |
Tan\ α | \left({Sin^{-2}\ α-1}\right)^{-\frac12} | \left({Cos^2\ α-1}\right)^{\frac12} | . | Cot^{-1}\ α |
Cot\ α | \left({Sin^{-2}\ α-1}\right)^{\frac12} | \left({Cos^2\ α-1}\right)^{-\frac12} | Tan^{-1}\ α | . |
Cos\ φ | 0 | -1 | 0 | 1 | Cos\ φ | \frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}2 | \frac{\sqrt{2+\sqrt{3}}}2 | \frac{\sqrt{2+\sqrt{2}}}2 | \frac{\sqrt{3}}2 | \frac{\sqrt{2+\sqrt{2-\sqrt{3}}}}2 | \frac{\sqrt{2}}2 | \frac{\sqrt{2-\sqrt{2-\sqrt{3}}}}2 | \frac 12 | \frac{\sqrt{2-\sqrt{2}}}2 | \frac{\sqrt{2-\sqrt{3}}}2 | \frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}2 | Cos\ φ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sin\ φ | -1 | 0 | 1 | 0 | Sin\ φ | \frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}2 | \frac{\sqrt{2-\sqrt{3}}}2 | \frac{\sqrt{2-\sqrt{2}}}2 | \frac 12 | \frac{\sqrt{2-\sqrt{2-\sqrt{3}}}}2 | \frac{\sqrt{2}}2 | \frac{\sqrt{2+\sqrt{2-\sqrt{3}}}}2 | \frac{\sqrt{3}}2 | \frac{\sqrt{2+\sqrt{2}}}2 | \frac{\sqrt{2+\sqrt{3}}}2 | \frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}2 | Sin\ φ |
φ | \frac{3π}2 | π | \frac π2 | 2kπ | φ | \frac{π}{24} | \frac{π}{12} | \frac π8 | \frac π6 | \frac{5π}{24} | \frac π4 | \frac{7π}{24} | \frac π3 | \frac{9π}{24} | \frac{5π}{12} | \frac{11π}{24} | φ |
Tan\ φ | ±∞ | 0 | ±∞ | 0 | Tan\ φ | \frac{\sqrt{2-\sqrt{3}}}{2+\sqrt{2+\sqrt{3}}} | 2-\sqrt{3} | \frac1{\sqrt{2}+1} | \frac1{\sqrt{3}} | \frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{2-\sqrt{3}}} | 1 | \frac{\sqrt{2+\sqrt{3}}}{2-\sqrt{2-\sqrt{3}}} | \sqrt{3} | \frac1{\sqrt{2}-1} | 2+\sqrt{3} | \frac{\sqrt{2-\sqrt{3}}}{2-\sqrt{2+\sqrt{3}}} | Tan\ φ |
Cot\ φ | 0 | ±∞ | 0 | ±∞ | Cot\ φ | \frac{\sqrt{2-\sqrt{3}}}{2-\sqrt{2+\sqrt{3}}} | 2+\sqrt{3} | \frac1{\sqrt{2}-1} | \sqrt{3} | \frac{\sqrt{2+\sqrt{3}}}{2-\sqrt{2-\sqrt{3}}} | 1 | \frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{2-\sqrt{3}}} | \frac1{\sqrt{3}} | \frac1{\sqrt{2}+1} | 2-\sqrt{3} | \frac{\sqrt{2-\sqrt{3}}}{2+\sqrt{2+\sqrt{3}}} | Cot\ φ |
arcCos\ A=±i·ln\left({A±\sqrt{A^2-1}}\right)
arcSin\ A=\left({±}\right)\ i·ln\left({±\sqrt{1-A^2}+\left({∓}\right)\ i·A}\right)
\frac i2\ ln\ \frac{1-i·A}{1+i·A}=arcTan\ A=\frac i2\ ln\ \frac{i+A}{i-A}
\frac i2\ ln\ \frac{i·A+1}{i·A-1}=arcCot\ A=\frac i2\ ln\ \frac{A-i}{A+i}
arcTan\ A+arcCot\ A=\frac π2±2kπ
±\left({arcTan\ A-arcCot\ A}\right)=\frac i2\ ln\ \left({i·\frac{i·A∓1}{i·A±1}}\right)^2=\frac i2\ ln\ \left({-i·\frac{1∓i·A}{1±i·A}}\right)^2=\frac i2\ ln\ \left({i·\frac{A±i}{A∓i}}\right)^2=etc. ...
[Eop]
No comments:
Post a Comment