Processing math: 66%

Tuesday, June 30, 2020

Another Diff. op.-Amp. circuit


VXVRVHVL=RARFRARV+RG(RA+RV)


VD=VCR11R3+VXR0R3+VLR0R11R11R3+R0R3+R0R11
VU=VCR22R5+VRR4R5+VHR4R22R22R5+R4R5+R4R22
FROM : VXVR=(VUVD)RFRG
IF : {R1=R2=RFR10=R20=RGR0=R4=RAR3=R5=RV
! note that the above condition makes the biasing invariant of the VC
 (VXVR)RGRF=VC(RF+RG)RV_+VRRARV+VHRA(RF+RG)(RF+RG)RV+RARV+RA(RF+RG)VC(RF+RG)RV_+VXRARV+VLRA(RF+RG)(RF+RG)RV+RARV+RA(RF+RG)
(VXVR)(RGRF+RARVRΣ3)=(VHVL)RA(RF+RG)RΣ3
\frac{V_X-V_R}{V_H-V_L}=\frac{R_A\left({R_F+R_G}\right)}{\cancel{R_{\Sigma3}}}·\frac{R_F·\cancel{R_{\Sigma3}}}{R_GR_{\Sigma3}+R_AR_VR_F}=
=\frac{R_A\left({R_F+R_G}\right)\frac{R_F}{R_G}}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)+R_AR_V\frac{R_F}{R_G}}=
=\frac{R_A\cancel{\left({R_F+R_G}\right)}\frac{R_F}{R_G}}{\cancel{\left({R_F+R_G}\right)}\left({R_A+R_V}\right)+R_AR_V\frac{\cancel{\left({R_F+R_G}\right)}}{R_G}}=

=\frac{R_AR_F}{R_AR_V+R_G\left({R_A+R_V}\right)}

a simulation example ::


[Eop]

No comments: