Derivation of the solutions ::
x2+px+q=0=(x−u)(x−v)=x2−(u+v)x+uv
p=2a
x2+2ax+a2−a2+q=0
x+a=±√a2−q
a=p2
x=−p2±√(p2)2−q
x1=−p2−√(p2)2−q
x2=−p2+√(p2)2−q
x2−x1=2√(p2)2−q
x2+x1=−p
x2=−p−x1
x1=−p−x2
x+p+qx=0
x=−p−qx→xn=xn+x¯n−qxn
xn=qx¯n ≡ xnx¯n=q | about: q=uv
Example ::
p | q | xn | x1−p−x2qx¯n | x2−p−x1qx¯n |
−1 | −1 | −−12±√(−12)2−(−1)=
1±√52= ={−√5−12√5+12 ={−5−12(√5+1)5−12(√5−1) ={−2√5+12√5−1 |
−2√5+1=
=−(−1)−2√5−1= =1−√5+12= =−−2+√5+12= =−√5−12= =−2√5+1 =−1(2√5−1)= =−√5−12= =−2√5+1 |
2√5−1=
=−(−1)−−2√5+1= =1+√5−12= =2+√5−12= =√5+12= =2√5−1 =−1(−2√5+1)= =√5+12= =2√5−1 |