Processing math: 66%

Wednesday, March 25, 2020

About the Quadratic Equation


Derivation of the solutions ::
x2+px+q=0=(xu)(xv)=x2(u+v)x+uv
p=2a
x2+2ax+a2a2+q=0
x+a=±a2q
a=p2
x=p2±(p2)2q
x1=p2(p2)2q
x2=p2+(p2)2q
x2x1=2(p2)2q
x2+x1=p
x2=px1
x1=px2
x+p+qx=0
x=pqxxn=xn+x¯nqxn
xn=qx¯n  xnx¯n=q | about: q=uv

Example ::
pqxn x1px2qx¯n x2px1qx¯n
11 12±(12)2(1)=
1±52=
={5125+12
={512(5+1)512(51)
={25+1251
25+1=
=(1)251=
=15+12=
=2+5+12=
=512=
=25+1
=1(251)=
=512=
=25+1
251=
=(1)25+1=
=1+512=
=2+512=
=5+12=
=251
=1(25+1)=
=5+12=
=251

Tuesday, March 24, 2020

Dynamic Formulas for the Capacitor and for the Inductor


Charging the capacitor from the CV(=Vs) src. ::
The voltage drop on the series resistor VR=VSVC
t0VC=R·C·ln(1VCVS)=R·C·lnVSVR
tV1CV2C=R·C·lnVSV1CVSV2C=R·C·lnV1RV2R
Dis-charging the capacitor through a fixed value resistor ::
tV2CV1C=R·C·lnV1CV2C=R·C·lnV2CV1C

"Charging" the inductor from the CV(=Vs) src. ::
The peak current IMAX=VSR
t0IL=LR·ln(1ILIMAX)
tI1LI2L=LR·lnIMAXI1LIMAXI2L
"Dis-charging" the inductor through a fixed value resistor ::
tI2LI1L=LR·lnI2LI1L

about how to get linear I U ramps on the inductor and on the capacitor : simulation

[Eop]

Monday, March 23, 2020

Diluting the solution


If there is solution with the concentration x=bb+a and we need to get the solution with concentration y=bb+c then from x(b+a)=b=y(b+c) we get the ratio of masses xy=b+cb+a=mFINALmINITIAL . . . so - if the mFINAL is given we need the mINITIAL=yx·mFINAL of the initial solution , the amount of water needed to be added is ca=d , from xy=mFmI=1+dmI=11dmF we see that d=(xy1)·mI=(1yx)·mF . . . checking
d=(xy1)·mI=(xy1)·yx·mF and
d=(1yx)·mF=(1yx)·xy·mI
PS! -- the below DEMO works and "in reverse" for the initial percentage being less than the final ... the result is given as a negative amount of the water to be "added" --e.g.-- describing the amount of water to be (evaporated/)extracted from the solution ... Now updated! to match the possible concentrating option ...
▼ ▼ ▼
► ► ► ◄ ◄ ◄
▲ ▲ ▲

. . . a Q.C. (in MSO Excel) for some non-intuitive cases ::


Friday, March 20, 2020

Physics


Linear Circular
Time t (s) Time t (s)
Mass m (kg) Moment of inertia I=mi·ri (kg·m2)
Distance s (m) Angle \overrightarrow{φ}\ \left({rad=1}\right)
Velocity v\ \left({\frac ms}\right) Angular velocity \overrightarrow{ω}=\frac{∂φ}{∂t}=\frac vR\ \left({\frac {rad}s=\frac1s}\right)
Acceleration a\ \left({\frac m{s^2}}\right) Angular_acceleration \overrightarrow{ɛ}=\frac{∂ω}{∂t}=\frac{a_{\tau}}R\ \left({\frac{rad}{s^2}=\frac1{s^2}}\right)
Impulse p=m·v=F·dt\ \left({N·s}\right) Angular momentum N=I·\overrightarrow{ω}=\overrightarrow{R}×\overrightarrow{p}\ \left({\frac{kg·m^2}s}\right)
Force F=\frac{∂p}{∂t}=m·a\ \left({N}\right) Torque M=I·\overrightarrow{ɛ}=\overrightarrow{R}×\overrightarrow{F}\ \left({N·m}\right)
Energy E=\frac{m·v^2}2=m·a·s\ \left({J}\right) Energy W=\frac{I·ω^2}2=I·ɛ·φ\ \left({J}\right)
Work A=F·∂s·Cos\ φ\ \left({J}\right) Work A=M·∂φ\ \left({J}\right)
Power P=\frac{∂A}{∂t}\ \left({W}\right) Power P=\frac{∂W}{∂t}\ \left({W}\right)
d\left({m·\overrightarrow{v}}\right)=\overrightarrow{F}·dt d\left({I·\overrightarrow{ω}}\right)=\overrightarrow{M}·dt

Thursday, March 19, 2020

p+ , p , x(T) , f(x)


Form the x^2-xT-1=0 where T\in\mathbb{R}^{+}\ ;\ T≠0
x-\frac1x=T\ →\ \frac xT=\frac{xT+1}{xT}=\frac{x+\frac1T}x
Def.: x≡p^+ and \frac1x≡p^-
p^+=\frac{\sqrt{T^2+4}+T}2\ →\ p^-=\frac1{p^+}=\frac2{\sqrt{T^2+4}+T}=\frac{\sqrt{T^2+4}-T}2

Def.: x\left({T}\right)=T+p^-\left({\frac1x}\right)=T+\frac{\sqrt{T^2+4}-T}2=\frac{\sqrt{T^2+4}+T}2 Def.: f\left({x}\right)≡f\left({x_T}\right)≡x\left({T}\right)

The properties of the f\left({x}\right) :
  1. f\left({-x}\right)=\frac1{f\left({x}\right)}=f\left({x}\right)-x
    \frac1{f\left({-x}\right)}=f\left({x}\right)=f\left({-x}\right)+x
  2. f\left({-x}\right)+x=\frac1{f\left({x}\right)-x}
  3. x·f\left({x}\right)-x·f\left({-x}\right)=x^2
    x·f\left({-x}\right)-x·f\left({x}\right)=-x^2


NULL


testing it out . . .
embedded super and subscript

\displaystyle{e^{e^{e^{e^e}}}}\\\displaystyle{a_{1_{2_{3_4}}}}

over-/under-line :
\begin{array}{|c|c|c|} \hline \overline{A}+\overline{B}=\overline{AB} & \overline{A}\ \overline{B}=\overline{A+B} & A\overline{B}+\overline{A}B=A⊕B\\ \hline {R\\ _{NORMAL}} & {\mathbf{R}\\ _{BOLD}} & {\mathbb{R}\\ _{OUTLINE}}\\ \hline \underline{UNDERLINE} & \overrightarrow{VECTOR} & {A·\cancel{B}\\ _{CANCELING\ ^{1)}\ AN\ OPERAND}} \\ \hline \end{array} \begin{array}{|c|c|} \hline switch&size\\ \hline \backslash tiny&{\tiny text\ size}\\ \hline \backslash scriptsize&{\scriptsize text\ size}\\ \hline \backslash small&{\small text\ size}\\ \hline \backslash normalsize&{\normalsize text\ size}\\ \hline \backslash large&{\large text\ size}\\ \hline \backslash Large&{\Large text\ size}\\ \hline \backslash LARGE&{\LARGE text\ size}\\ \hline \backslash huge&{\huge text\ size}\\ \hline \backslash Huge&{\Huge text\ size}\\ \hline \end{array} \begin{array}{|c|c|} \hline switch&color\\ \hline \backslash color\left\{yellow\right\}&{\color{yellow}{colored\ text}}\\ \hline \end{array} about 1) MathJax TeX and LaTeX Support — MathJax 2.7 documentation - TeX and LaTeX extensions