Wednesday, March 25, 2020

About the Quadratic Equation


Derivation of the solutions ::
\(x^2+px+q=0=\left({x-u}\right)\left({x-v}\right)=x^2-\left({u+v}\right)x+uv\)
\(p=2a\)
\(x^2+2ax+a^2-a^2+q=0\)
\(x+a=±\sqrt{a^2-q}\)
\(a=\frac p2\)
\(x=-\frac p2±\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_1=-\frac p2-\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_2=-\frac p2+\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_2-x_1=2\sqrt{{\left({\frac p2}\right)}^2-q}\)
\(x_2+x_1=-p\)
\(x_2=-p-x_1\)
\(x_1=-p-x_2\)
\(x+p+\frac qx=0\)
\(\displaystyle{x=-p-\frac qx\quad \rightarrow \quad x_n=x_n+x_\overline{n}-\frac q{x_n}}\)
\(\displaystyle{x_n=\frac q{x_\overline{n}}\ \equiv\ x_nx_\overline{n}=q\ |\ about:\ q=uv}\)

Example ::
\(\mathbf{p}\)\(\mathbf{q}\)\(\mathbf{x_n}\) \(\mathbf{x_1}\\ -p-x_2\\ \displaystyle{\frac q{x_\overline{n}}}\) \(\mathbf{x_2}\\ -p-x_1\\ \displaystyle{\frac q{x_\overline{n}}}\)
\(-1\)\(-1\) \(-\frac{-1}2±\sqrt{{\left({\frac{-1}2}\right)}^2-\left({-1}\right)}=\)
\(\frac{1±\sqrt{5}}2=\)
\(=\cases{-\frac{\sqrt{5}-1}2\\ \frac{\sqrt{5}+1}2}\)
\(=\cases{-\frac{5-1}{2\left({\sqrt{5}+1}\right)}\\ \frac{5-1}{2\left({\sqrt{5}-1}\right)}}\)
\(=\cases{\frac{-2}{\sqrt{5}+1}\\ \frac2{\sqrt{5}-1}}\)
\(\frac{-2}{\sqrt{5}+1}\mathbf{=}\)
\(\mathbf{=}-\left({-1}\right)-\frac{2}{\sqrt{5}-1}=\)
\(=1-\frac{\sqrt{5}+1}2=\)
\(=-\frac{-2+\sqrt{5}+1}2=\)
\(=-\frac{\sqrt{5}-1}2=\)
\(=-\frac2{\sqrt{5}+1}\)
\(\mathbf{=}\frac{-1}{\left({\frac2{\sqrt{5}-1}}\right)}=\)
\(=-\frac{\sqrt{5}-1}2=\)
\(=\frac{-2}{\sqrt{5}+1}\)
\(\frac2{\sqrt{5}-1}\mathbf{=}\)
\(\mathbf{=}-\left({-1}\right)-\frac{-2}{\sqrt{5}+1}=\)
\(=1+\frac{\sqrt{5}-1}2=\)
\(=\frac{2+\sqrt{5}-1}2=\)
\(=\frac{\sqrt{5}+1}2=\)
\(=\frac2{\sqrt{5}-1}\)
\(\mathbf{=}\frac{-1}{\left({\frac{-2}{\sqrt{5}+1}}\right)}=\)
\(=\frac{\sqrt{5}+1}2=\)
\(=\frac2{\sqrt{5}-1}\)

Tuesday, March 24, 2020

Dynamic Formulas for the Capacitor and for the Inductor


Charging the capacitor from the CV(=Vs) src. ::
The voltage drop on the series resistor \[V_R=V_S-V_C\]
\[t_{0_{↑}^{↑}→V_C}=-R·C·ln\left({1-\frac{V_C}{V_S}}\right)=R·C·ln\frac{V_S}{V_R}\]
\[t_{V_{1_C}{}_{↑}^{↑}→V_{2_C}}=R·C·ln\frac{V_S-V_{1_C}}{V_S-V_{2_C}}=R·C·ln\frac{V_{1_R}}{V_{2_R}}\]
Dis-charging the capacitor through a fixed value resistor ::
\[t_{V_{2_C}{}_{↓}^{↓}→V_{1_C}}=-R·C·ln\frac{V_{1_C}}{V_{2_C}}=R·C·ln\frac{V_{2_C}}{V_{1_C}}\]

"Charging" the inductor from the CV(=Vs) src. ::
The peak current \[I_{MAX}=\frac{V_S}R\]
\[t_{0_{↑}^{↑}→I_L}=-\frac LR·ln\left({1-\frac{I_L}{I_{MAX}}}\right)\]
\[t_{I_{1_L}{}_{↑}^{↑}→I_{2_L}}=\frac LR·ln\frac{I_{MAX}-I_{1_L}}{I_{MAX}-I_{2_L}}\]
"Dis-charging" the inductor through a fixed value resistor ::
\[t_{I_{2_L}{}_{↓}^{↓}→I_{1_L}}=\frac LR·ln\frac{I_{2_L}}{I_{1_L}}\]


[Eop]

Monday, March 23, 2020

Diluting the solution


If there is solution with the concentration \(x=\frac b{b+a}\) and we need to get the solution with concentration \(y=\frac b{b+c}\) then from \(x\left({b+a}\right)=b=y\left({b+c}\right)\) we get the ratio of masses \(\displaystyle{\frac xy=\frac{b+c}{b+a}=\frac{m_{FINAL}}{m_{INITIAL}}}\) . . . so - if the \(\displaystyle{m_{FINAL}}\) is given we need the \(\displaystyle{m_{INITIAL}=\frac yx·m_{FINAL}}\) of the initial solution , the amount of water needed to be added is \(c-a=\mathbf{d}\) , from \(\displaystyle{\frac xy=\frac{m_F}{m_I}=1+\frac d{m_I}=\frac1{1-\frac d{m_F}}}\) we see that \(\displaystyle{d=\left({\frac xy-1}\right)·m_I=\left({1-\frac yx}\right)·m_F}\) . . . checking
\(\displaystyle{d=\left({\frac xy-1}\right)·m_I=\left({\frac xy-1}\right)·\frac yx·m_F}\) and
\(\displaystyle{d=\left({1-\frac yx}\right)·m_F=\left({1-\frac yx}\right)·\frac xy·m_I}\)
PS! -- the below DEMO works and "in reverse" for the initial percentage being less than the final ... the result is given as a negative amount of the water to be "added" --e.g.-- describing the amount of water to be (evaporated/)extracted from the solution ... Now updated! to match the possible concentrating option ...
▼ ▼ ▼
► ► ► ◄ ◄ ◄
▲ ▲ ▲

. . . a Q.C. (in MSO Excel) for some non-intuitive cases ::


Friday, March 20, 2020

Physics


Linear Circular
Time \(t\ \left({s}\right)\) Time \(t\ \left({s}\right)\)
Mass \(m\ \left({kg}\right)\) Moment of inertia \(I=\sum{m_i·r_i}\ \left({kg·m^2}\right)\)
Distance \(s\ \left({m}\right)\) Angle \(\overrightarrow{φ}\ \left({rad=1}\right)\)
Velocity \(v\ \left({\frac ms}\right)\) Angular velocity \(\overrightarrow{ω}=\frac{∂φ}{∂t}=\frac vR\ \left({\frac {rad}s=\frac1s}\right)\)
Acceleration \(a\ \left({\frac m{s^2}}\right)\) Angular_acceleration \(\overrightarrow{ɛ}=\frac{∂ω}{∂t}=\frac{a_{\tau}}R\ \left({\frac{rad}{s^2}=\frac1{s^2}}\right)\)
Impulse \(p=m·v=F·dt\ \left({N·s}\right)\) Angular momentum \(N=I·\overrightarrow{ω}=\overrightarrow{R}×\overrightarrow{p}\ \left({\frac{kg·m^2}s}\right)\)
Force \(F=\frac{∂p}{∂t}=m·a\ \left({N}\right)\) Torque \(M=I·\overrightarrow{ɛ}=\overrightarrow{R}×\overrightarrow{F}\ \left({N·m}\right)\)
Energy \(E=\frac{m·v^2}2=m·a·s\ \left({J}\right)\) Energy \(W=\frac{I·ω^2}2=I·ɛ·φ\ \left({J}\right)\)
Work \(A=F·∂s·Cos\ φ\ \left({J}\right)\) Work \(A=M·∂φ\ \left({J}\right)\)
Power \(P=\frac{∂A}{∂t}\ \left({W}\right)\) Power \(P=\frac{∂W}{∂t}\ \left({W}\right)\)
\(d\left({m·\overrightarrow{v}}\right)=\overrightarrow{F}·dt\) \(d\left({I·\overrightarrow{ω}}\right)=\overrightarrow{M}·dt\)

Thursday, March 19, 2020

p+ , p , x(T) , f(x)


Form the \(x^2-xT-1=0\) where \(T\in\mathbb{R}^{+}\ ;\ T≠0\)
\(x-\frac1x=T\ →\ \frac xT=\frac{xT+1}{xT}=\frac{x+\frac1T}x\)
Def.: \(x≡p^+\) and \(\frac1x≡p^-\)
\(p^+=\frac{\sqrt{T^2+4}+T}2\ →\ p^-=\frac1{p^+}=\frac2{\sqrt{T^2+4}+T}=\frac{\sqrt{T^2+4}-T}2\)

Def.: \(x\left({T}\right)=T+p^-\left({\frac1x}\right)=T+\frac{\sqrt{T^2+4}-T}2=\frac{\sqrt{T^2+4}+T}2\) Def.: \(f\left({x}\right)≡f\left({x_T}\right)≡x\left({T}\right)\)

The properties of the \(f\left({x}\right)\) :
  1. \(f\left({-x}\right)=\frac1{f\left({x}\right)}=f\left({x}\right)-x\)
    \(\frac1{f\left({-x}\right)}=f\left({x}\right)=f\left({-x}\right)+x\)
  2. \(f\left({-x}\right)+x=\frac1{f\left({x}\right)-x}\)
  3. \(x·f\left({x}\right)-x·f\left({-x}\right)=x^2\)
    \(x·f\left({-x}\right)-x·f\left({x}\right)=-x^2\)


NULL


testing it out . . .
embedded super and subscript

\(\displaystyle{e^{e^{e^{e^e}}}}\\\displaystyle{a_{1_{2_{3_4}}}}\)

over-/under-line :
\[\begin{array}{|c|c|c|} \hline \overline{A}+\overline{B}=\overline{AB} & \overline{A}\ \overline{B}=\overline{A+B} & A\overline{B}+\overline{A}B=A⊕B\\ \hline {R\\ _{NORMAL}} & {\mathbf{R}\\ _{BOLD}} & {\mathbb{R}\\ _{OUTLINE}}\\ \hline \underline{UNDERLINE} & \overrightarrow{VECTOR} & {A·\cancel{B}\\ _{CANCELING\ ^{1)}\ AN\ OPERAND}} \\ \hline \end{array} \] \[\begin{array}{|c|c|} \hline switch&size\\ \hline \backslash tiny&{\tiny text\ size}\\ \hline \backslash scriptsize&{\scriptsize text\ size}\\ \hline \backslash small&{\small text\ size}\\ \hline \backslash normalsize&{\normalsize text\ size}\\ \hline \backslash large&{\large text\ size}\\ \hline \backslash Large&{\Large text\ size}\\ \hline \backslash LARGE&{\LARGE text\ size}\\ \hline \backslash huge&{\huge text\ size}\\ \hline \backslash Huge&{\Huge text\ size}\\ \hline \end{array} \] \[\begin{array}{|c|c|} \hline switch&color\\ \hline \backslash color\left\{yellow\right\}&{\color{yellow}{colored\ text}}\\ \hline \end{array} \] about 1) MathJax TeX and LaTeX Support — MathJax 2.7 documentation - TeX and LaTeX extensions