Saturday, October 24, 2020

Re :: Pos. Feedback Op Amp


Definitions ::

\[\boxed{\frac1{R}=\frac1{R_1}+\frac1{R_2}=\frac1{R_3}+\frac1{R_4}\\ \frac1{R_{1_2}}{}^{↓}=^{↓}\frac1R-\frac1{R_{2_1}}\\ \frac1{R_{3_4}}{}^{↓}=^{↓}\frac1R-\frac1{R_{4_3}}}\]

\[{}^{↓↓}\ \frac{R_3}{R_1}+\frac{R_3}{R_2}-\frac{R_3}{R_3}=\frac{R_3}{R_4}=\\ =\mathbf{R_3·\frac{R_1+R_2}{R_1·R_2}-1}\]

\[V_B=V_X·\frac{R_1}{R_1+R_2}\\ V_A=V_S+\left({V_X-V_S}\right)·\frac{R_3}{R_3+R_4}\]

\[V_X·\frac{R_1}{R_1+R_2}=V_S+\left({V_X-V_S}\right)·\frac{R_3}{R_3+R_4}\\ V_X·\left({\frac{R_1}{R_1+R_2}-\frac{R_4}{R_3+R_4}}\right)=V_S·\left({1-\frac{R_4}{R_3+R_4}}\right)\]

\[A_V=N=\frac{V_X}{V_S}=\frac{\frac{\cancel{R_3}+R_4\cancel{-R_3}}{\bcancel{R_3+R_4}}}{\frac{\cancel{R_1·R_3}+R_1·R_4\cancel{-R_1·R_3}+R_2·R_3}{\left({R_1+R_2}\right)·\bcancel{\left({R_3+R_4}\right)}}}=\]

\[=\frac{R_1·R_4+R_2·R_4}{R_1·R_4-R_2·R_3}=\frac{1+\frac{R_2}{R_1}}{1-\frac{R_2}{R_1}·\frac{R_3}{R_4}}\]

\[N-N·\frac{R_2}{R_1}·\frac{R_3}{R_4}=1+\frac{R_2}{R_1}\]

\[\left({N-1}\right)·R_1·R_4=R_2·\left({N·R_3+R_4}\right)\]


\[\frac{R_2}{R_1}=\frac{\left({N-1}\right·R_4)}{N·R_3+R_4}=\frac{N-1}{N·\frac{R_3}{R_4}+1}\]

\[{}^{↑↑}\ \frac{R_2}{R_1}·\left({N·\mathbf{\left({R_3·\frac{R_1+R_2}{R_1·R_2}-1}\right)}+1}\right)=N-1\]

\[\frac{R_2}{R_1}·\left({N·R_3·\frac{R_1+R_2}{R_1·R_2}-\left({N-1}\right)}\right)=N-1\]

\[\frac{R_2}{R_1}=\frac1{\frac N{N-1}·R_3·\frac{R_1+R_2}{R_1·R_2}-1}\]

\[\frac N{N-1}·R_3·\frac{\frac{R_1}{R_2}+1}{R_1}-1=\frac{R_1}{R_2}\]

 \[\frac N{N-1}·R_3·\frac{1+\frac{R_2}{R_1}}{R_1}-\frac{R_2}{R_1}=1\]

 \[\frac N{N-1}·R_3·\frac{\bcancel{\frac{R_2}{R_1}+1}}{R_1}=\bcancel{\frac{R_2}{R_1}+1}\]

 \[\frac N{N-1}=\mathbf{\frac{R_1}{R_3}}\]


 \[\frac{R_2}{R_1}=\frac{N-1}{N·\frac{R_3}{R_4}+1}=\frac1{\frac N{N-1}·\frac{R_3}{R_4}+\frac1{N-1}}=\]

\[=\frac1{\mathbf{\frac{R_1}{\cancel{R_3}}}·\frac{\cancel{R_3}}{R_4}+\frac1{N-1}}=\frac1{\frac{R_1}{R_4}+\frac1{N-1}}\]

\[\frac{R_2}{R_1}·\left({\frac{R_1}{R_4}+\frac1{N-1}}\right)=1\\ \frac1{R_4}+\frac1{R_1}·\frac1{N-1}=\frac1{R_2}\\ \frac1{R_1}·\frac1{N-1}=\frac1{R_2}-\frac1{R_4}\]

\[N-1=\frac1{R_1·\left({\frac1{R_2}-\frac1{R_4}}\right)}\]


\[N=1+\frac1{R_1·\left({\frac1{R_2}-\frac1{R_4}}\right)}{}^{↑}=^{↑}1+\frac1{R_1·\left({\frac1{R_2}+\frac1{R_3}-\frac1R}\right)}=1+\frac1{R_1·\left({\frac1{R_3}-\frac1{R_1}}\right)}=\]

\[=\boxed{A_V=1+\frac1{\frac{R_1}{R_3}-1}}\]

Reminder :: \(\frac1{R_4}=\frac1{R_2}+\frac1{R_1}-\frac1{R_3} \) or \(\cases{\frac1{R_2}=\frac1R-\frac1{R_1}\\ \frac1{R_4}=\frac1R-\frac1{R_3}}\)

\({Def\ ::\ d=\frac{R_1}{R_3}\\ then\ :\ N-1=\frac1{d-1}\ and\ d=1+\frac1{N-1}}\)

if R is also given the rest can be computed ... as \(R_1=d·R_3\)

in "general" situation the LM308 likes the biasing resistance of the double 7k5 Ω --e.g.-- the R = 3.75 kΩ (for the noisy input the 100 kΩ in parallel with the 5 pF or less may be more suitable/stable however - so ... )

Related Post : More Op-Amp biasing schemes

The LTSpice Example ::


PS! the negative gain can result by the reached formula for the voltage gain -- but in practise it won't work !!!

a slew-rate versus a common mode input impedance ::



Note :: the realistic/conventional Op.-Amp.-s have the impedance value a bit lower than shown in the simulation


[Eop]