Processing math: 31%

Tuesday, June 30, 2020

More Op-Amp biasing schemes


VXVRVHVL=RFRG


IF {VXVRR  L , U  DR0=R2R1=R3
VL+(VXVL)RGRF+RG=VH+(VRVH)RGRF+RG
(VHVL)RF+RGRG=(VXVL)(VRVH)=(VXVR)+(VHVL)
VXVRVHVL=RF+RGRG1=RFRG

IF {VX=VRR  L , U  DR0R2R1R3
see the optimizations below : VXVS=RBRFRD(RBRF)


VR+(VXVR)RGRF+RG=VS+(VXVS)RDRB+RD
(VSVR)=(VXVR)RGRF+RG(VXVS)RDRB+RD
VR=0 :  VS=VXRGRF+RG(VXVS)RDRB+RD
VS(1RDRB+RD)=VX(RGRF+RGRDRB+RD)
VXVS=RBRB+RDRGRF+RGRDRB+RD=RBRB+RDRF+RGRGRD= ...
(preferably) also : 1RF+1RG=1RB+1RD ...RB+RDRF+RG=RBRDRFRG
...\ =\frac{R_B}{\frac{R_BR_D}{R_F\cancel{R_G}}\cancel{R_G}-R_D}=\frac{R_BR_F}{R_D\left({R_B-R_F}\right)}

~~~~~~~~~~~~~~~
simulation example in Falstad
~~~~~~~~~~~~~~~

[Eop]

Another Diff. op.-Amp. circuit


\frac{V_X-V_R}{V_H-V_L}=\frac{R_AR_F}{R_AR_V+R_G\left({R_A+R_V}\right)}


V_D=\frac{V_CR_{11}R_3+V_XR_0R_3+V_LR_0R_{11}}{R_{11}R_3+R_0R_3+R_0R_{11}}
V_U=\frac{V_CR_{22}R_5+V_RR_4R_5+V_HR_4R_{22}}{R_{22}R_5+R_4R_5+R_4R_{22}}
FROM\ :\ V_X-V_R=\left({V_U-V_D}\right)\frac{R_F}{R_G}
IF\ :\ \cases{R_1=R_2=R_F\\ R_{10}=R_{20}=R_G\\ R_0=R_4=R_A\\ R_3=R_5=R_V}
\boxed{!\ note\ that\ the\ above\ condition\ makes\ the\ biasing\ invariant\ of\ the\ \mathbf{V_C}}
 \left({V_X-V_R}\right)\frac{R_G}{R_F}= \frac{\underline{V_C\left({R_F+R_G}\right)R_V}+\boxed{V_RR_AR_V}+V_HR_A\left({R_F+R_G}\right)}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)}-\frac{\underline{V_C\left({R_F+R_G}\right)R_V}+\boxed{V_XR_AR_V}+V_LR_A\left({R_F+R_G}\right)}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)}
\left({V_X-V_R}\right)\left({\frac{R_G}{R_F}+\frac{R_AR_V}{R_{\Sigma3}}}\right)=\left({V_H-V_L}\right)\frac{R_A\left({R_F+R_G}\right)}{R_{\Sigma3}}
\frac{V_X-V_R}{V_H-V_L}=\frac{R_A\left({R_F+R_G}\right)}{\cancel{R_{\Sigma3}}}·\frac{R_F·\cancel{R_{\Sigma3}}}{R_GR_{\Sigma3}+R_AR_VR_F}=
=\frac{R_A\left({R_F+R_G}\right)\frac{R_F}{R_G}}{\left({R_F+R_G}\right)R_V+R_AR_V+R_A\left({R_F+R_G}\right)+R_AR_V\frac{R_F}{R_G}}=
=\frac{R_A\cancel{\left({R_F+R_G}\right)}\frac{R_F}{R_G}}{\cancel{\left({R_F+R_G}\right)}\left({R_A+R_V}\right)+R_AR_V\frac{\cancel{\left({R_F+R_G}\right)}}{R_G}}=

=\frac{R_AR_F}{R_AR_V+R_G\left({R_A+R_V}\right)}

a simulation example ::


[Eop]

Saturday, June 27, 2020

Differential Op-Amp formulas check



the case for :
\cases{signal\ :\ U_S=U_1\\ reference\ :\ U_R=U_0\\ gain\ :\ R_G=R_0\\ feedback\ :\ R_F=R_1\\ output\ :\ U_O=U_X}
U_R=U_\overline{IN}=U_S+\left({U_O-U_S}\right)·\frac{R_G}{R_G+R_F}
U_S-U_R=-\left({U_O-U_R+U_R-U_S}\right)·\frac{R_G}{R_G+R_F}
\frac{U_O-U_R}{U_S-U_R}-1=A_V-1=-1-\frac{R_F}{R_G}
\boxed{A_V=-\frac{R_F}{R_G}}
\begin{align*}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad  \\ \hline \end{align*}
\cases{signal\ :\ U_S=U_0\\ reference\ :\ U_R=U_1}
U_S=U_\overline{IN}=U_R+\left({U_O-U_R}\right)·\frac{R_G}{R_G+R_F}
U_S-U_R=\left({U_O-U_R}\right)·\frac{R_G}{R_G+R_F}
\frac{U_O-U_R}{U_S-U_R}=\boxed{A_V=1+\frac{R_F}{R_G}}



\frac{U_Y}{U_1}=\frac{R_0+R_1}{R_0}\qquad \frac{U_X-U_0}{U_Y-U_0}=-\frac{R_3}{R_2}\\ {\ }
\boxed{U_X=}\ U_0\left({\frac{R_2+R_3}{R_2}}\right)-\frac{R_3}{R_2}U_1\left({\frac{R_0+R_1}{R_0}}\right)\ {^?= {}_?}\ \mathbf{...}\ =\left({U_0-U_1}\right)\frac{R_2+R_3}{R_2}\ \boxed{=\Delta U_{IN}\left({1+\mathbf{M}}\right)}\\ {\ }
?\qquad \frac{R_2+R_3}{R_2}=\frac{R_3R_0+R_3R_1}{R_0R_0}\ {^?= {}_?}\ ...\ =\frac{R_3\frac{R_0}{R_1}+R_3}{\frac{R_0}{R_1}R_2}=\frac{R_3\frac{R_3}{R_2}+R_3}{\frac{R_3}{R_2}R_2}=\frac{R_2+R_3}{R_2}\\ {\ }
R_0=\frac{R_3\left({R_0+R_1}\right)}{R_3+R_2}\\ {\ }
\cases{\underline{R_0R_3}+R_0R_2=\underline{R_0R_3}+R_1R_3\\ {\ }\\ \boxed{R_0R_2=R_1R_3}}\qquad \frac{R_3}{R_2}=\frac{sR_0}{sR_1}=\mathbf{M}\qquad \mathbf{...} \uparrow


some tests :

MAX input impedance test :




Max. frequency TEST :




[Eop]