an arbitrary output range ver. of the below a related post + the formulas for the non supply median centered output limit :
IC=VLR3 ⇒ R3=VLIC , def. : χ=R3(1VL−1VH){VH=VSR1R1+R2=VS11+R2R1VL=VSR1||R3R1||R3+R2=VS11+R2R1||R3=VS11+R2R1(1+R1R3)
{VHVS(1+R2R1)=1 ⇒ R2R1=VSVH−1 ... =VSVL−1R1R3+1VLVS(1+R2R1(1+R1R3))=1 ⇒ R2R1(R1R3+1)=VSVL−1 ⇒ R1R3=VSVL−1VSVH−1−1 ⇒
⇒ R1=R3(VSVL−1VSVH−1−1)=R311VH−1VS(1VL−1VH)=χ⋅11VH−1VS
R2=R1(VSVL−1)=R3(VSVL−1)(VSVL−1VSVH−1−1)==R3(VSVL−1−VSVH+1)=R3VS(1VL−1VH)=R2=χ⋅VS
---==≡==--- Do NOT mix the formulas from the above with the formulas from the below ---==≡==---
• a Supply median centered output limit ver. -- Some definitions :
VS=VCCIC=ISNKVH=R1R1+R2VL=R1||R3R1||R3+R2IC=VLR3⇒R3=VLIC=VSIC⋅1−1n2
R2R1=α=VLVH=n−1n+1=R1||R3R2=(R1R3R1+R3)R2=1√1+R1R3 ⇒⇒ R1=R3(1α2−1)=R34n(n−1)2⇒ R2=α⋅R1=R34nn2−1
• (↑ You only need to provide VS , n , IC ↑ , anyway - ) Some more definitions :
VL=VS−VH , 1n - is the dynamic output-range around the supply median --e.g.-- the 1 n-th of the total supply
{VH−VLVS=1n=R1R1+R2−R1||R3R1||R3+R2=11+R2R1−11+R2R1||R3VH+VL=VS ⇒⇒⇒1=11+R2R1+11+R2R1||R3
{1+1n2=11+R2R1=A⇒R1A=R1+R21−1n2=11+R2R1||R3=B⇒R1||R3B=R1||R3+R2R1||R3=11R1+1R3=R1⋅R3R1+R3
R2=R1(1A−1)=R1n−1n+1==R1||R3(1B−1)=R1R3R1+R3⋅n+1n−1⇒R2=√R12R3R1+R3=R1√1+R1R3
• More backwards extending definitions :
{1A−1=2nn+1−1=n−1n+1=α1B−1=2nn−1−1=n+1n−1=1α{VH−VL=VSnVH+VL=VS⇒{VH=VS1+1n2VL=VS1−1n2
{VL=VSR1||R3R1||R3+R2=VS1+R2R1||R3=VS1+1α=αVS1+αVH=VSR1R1+R2=VS1+R2R1=VS1+α⇒VLVH=α
• About αFn.of(n) :
{VH−VL=VSnVH+VL=VS⇒{1−α=1n⋅VSVH1+α=VSVH⇒n(1−α)=1+αn=1+α1−α
n−nα=1+αn−1=α(n+1)α=n−1n+1
[Eop]