Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, September 9, 2022

Re deriving formulas for the quadratic eq.


x2+ax+b=0|a=2sx2+2sx+s2=s2b(x+s)2=s2b

x+s=s2bx=s±s2b|s=a2x=a2±(a2)2b


[Eop]

Wednesday, June 15, 2022

re-worked the formulas for the OC(OD)/OE voltage comparator's resistive output delimitter


an arbitrary output range ver. of the below a related post + the formulas for the non supply median centered output limit :

IC=VLR3  R3=VLIC , def. : χ=R3(1VL1VH){VH=VSR1R1+R2=VS11+R2R1VL=VSR1||R3R1||R3+R2=VS11+R2R1||R3=VS11+R2R1(1+R1R3)

{VHVS(1+R2R1)=1  R2R1=VSVH1 ... =VSVL1R1R3+1VLVS(1+R2R1(1+R1R3))=1  R2R1(R1R3+1)=VSVL1  R1R3=VSVL1VSVH11 

 R1=R3(VSVL1VSVH11)=R311VH1VS(1VL1VH)=χ11VH1VS

R2=R1(VSVL1)=R3(VSVL1)(VSVL1VSVH11)==R3(VSVL1VSVH+1)=R3VS(1VL1VH)=R2=χVS


---==≡==--- Do NOT mix the formulas from the above with the formulas from the below ---==≡==---


• a Supply median centered output limit ver. -- Some definitions :

VS=VCCIC=ISNKVH=R1R1+R2VL=R1||R3R1||R3+R2IC=VLR3R3=VLIC=VSIC11n2

R2R1=α=VLVH=n1n+1=R1||R3R2=(R1R3R1+R3)R2=11+R1R3  R1=R3(1α21)=R34n(n1)2 R2=αR1=R34nn21

• (↑ You only need to provide VS , n , IC ↑ ,  anyway - ) Some more definitions :

VL=VSVH , 1n - is the dynamic output-range around the supply median --e.g.-- the 1 n-th of the total supply

{VHVLVS=1n=R1R1+R2R1||R3R1||R3+R2=11+R2R111+R2R1||R3VH+VL=VS 1=11+R2R1+11+R2R1||R3

{1+1n2=11+R2R1=AR1A=R1+R211n2=11+R2R1||R3=BR1||R3B=R1||R3+R2R1||R3=11R1+1R3=R1R3R1+R3

R2=R1(1A1)=R1n1n+1==R1||R3(1B1)=R1R3R1+R3n+1n1R2=R12R3R1+R3=R11+R1R3

• More backwards extending definitions :

{1A1=2nn+11=n1n+1=α1B1=2nn11=n+1n1=1α{VHVL=VSnVH+VL=VS{VH=VS1+1n2VL=VS11n2

{VL=VSR1||R3R1||R3+R2=VS1+R2R1||R3=VS1+1α=αVS1+αVH=VSR1R1+R2=VS1+R2R1=VS1+αVLVH=α

• About αFn.of(n) :

{VHVL=VSnVH+VL=VS{1α=1nVSVH1+α=VSVHn(1α)=1+αn=1+α1α

nnα=1+αn1=α(n+1)α=n1n+1


[Eop]